[1]
S.H. Lin and K. Argasinski, Fluoropolymer alloys: performance optimization of PVDF alloys. in Fluopolymers 2: Properties, G. Hougham, P.E. Cassidy, K. Johns and T. Davison (editors), New York: Plenum Press, vol. 122, (1999).
Google Scholar
[2]
S. Krause, J.J. Gormley, N. Roman, J.A. Shetter and W.H. Wantanade, Glass temperatures of some acrylic polymers, J. Polym. Sci., Part A: Polym. Chem., vol. 10, no. 3, pp.3573-3586, (1965).
DOI: 10.1002/pol.1965.100031020
Google Scholar
[3]
A. Majumdar, J.P. Carrejo and J. Lai, Thermal imaging using the atomic force microscope, Appl. Phys. Lett., Vol. 20, no. 62, pp.2501-2503, (1993).
DOI: 10.1063/1.109335
Google Scholar
[4]
H.M. Pollock and A. Hammiche, Micro-thermal analysis: techniques and applications, J. Phys. D: Appl. Phys., Vol. 9, no. 34, pp.23-53, (2001).
Google Scholar
[5]
R.F. Boyres, in: H.F. Mark, N.M. Bikales. Suppl. vol. II, New York: Wiley, 1997, p.745.
Google Scholar
[6]
M. Kunaver, J. Zadnik, O. Planinsek and S. Srcie, Inverse gas chromatography - A different approach to characterization of solids and liquids, Acta. Chim. Slov., vol. 3, no. 51, pp.373-394, (2004).
Google Scholar
[7]
M.S. Gaur, P. Shukla, R.K. Tiwari, A. Tanwar and S.P. Singh, New approach for the measurement of glass transition temperature of polymer, Indian. J. of Pure & Applied Phys., vol. 8, no. 45, pp.535-539, (2008).
Google Scholar
[8]
W.P. Winfree, F.R. Parker, and M.C. Wu, Acoustic measurement of glass transition temperature in polymers, IEEE 1986 Ultrasonics Symposium, pp.1009-1012, (1986).
DOI: 10.1109/ultsym.1986.198889
Google Scholar
[9]
T. Miyazaki, R. Inoue, K. Nishida and T. Kanaya, X-ray reflectivity studies on glass transition of free standing polystyrene thin films, Eur. Phys. J. Special Topics, vol. 141, pp.203-206, (2007).
DOI: 10.1140/epjst/e2007-00041-y
Google Scholar
[10]
L. Banks and B. Ellis, The glass transition temperature of an epoxy resin and the effect of absorbed water, Polym. Bulletin, vol. 1, pp.377-382, (1979).
DOI: 10.1007/bf00284406
Google Scholar
[11]
A.R. Katrizky, P. Pachwal, K.W. Law, M. Karelson, and V.S. Lobanov, Prediction of polymer glass transition temperature using a general quantitative structure-property relationship treatment, J. Chem. Inf. Comput. Sci., vol. 36, pp.879-884, (1996).
DOI: 10.1021/ci950156w
Google Scholar
[12]
J. Bicerano, Prediction of polymers properties, 2nd ed., New York: Marcel Dekker, (1996).
Google Scholar
[13]
P. Camelio, C.C. Cypcar, V. lazzeri and B. Waegell, A novel approach toward the prediction of the glass transition temperature: application of the EVM model, a designer QSPR equation for the prediction of acrylate and methacrylate polymers, J. Polym. Sci. Part A: Polym. Chem., vol. 35, pp.2579-2591, (1997).
DOI: 10.1002/(sici)1099-0518(19970930)35:13<2579::aid-pola5>3.0.co;2-m
Google Scholar
[14]
J. Schut, D. Bolikal, I.J. Khan, A. Pesnell, A. Rege, R. Rojas and L. Sheihet, Glass transition temperature prediction of polymers through the mass-per-flexible-bond principle, Polymer, vol. 48, pp.6115-6124, (2007).
DOI: 10.1016/j.polymer.2007.07.048
Google Scholar
[15]
A.R. Katritzky, S. Sild, V. Lobanov and M. Karelson, Quantitative structure- property relationship (QSPR) Correlation of glass transition temperature of high molecular weight polymers, J. Chem. Inf. Comput. Sci., vol. 38, pp.300-304, (1998).
DOI: 10.1021/ci9700687
Google Scholar
[16]
S.J. Joyce and D.J. Osguthorpe, Neural network prediction of glass- transition temperatures from monomer structure, J. Chem. Soc., Faraday Trans., vol. 91, pp.2491-2496, (1995).
DOI: 10.1039/ft9959102491
Google Scholar
[17]
B.E. Mattioni and P.C. Jurs, Prediction of glass transition temperature from monomer and repeat unit structure using computation neural networks, J. Chem. Inf. Comput. Sci., vol. 42, pp.232-240, (2002).
DOI: 10.1021/ci010062o
Google Scholar
[18]
X.L. Yu and B. Yi, X.Y. Wang, Z.M. Xie, Correlation between the glass transition temperatures and multipole moments for polymers, Chem. Phys., vol. 332, pp.115-118, (2007).
DOI: 10.1016/j.chemphys.2006.11.029
Google Scholar
[19]
A.L. Liu, X.Y. Wang, L. Wang, H.L. Wang and H.L. Wang, Prediction of dielectric constants and glass transition temperatures of polymers by quantitative structure property relationships, Eur. Polym. J., vol. 43, pp.989-995, (2007).
DOI: 10.1016/j.eurpolymj.2006.12.029
Google Scholar
[20]
V. Vapnik, The natural of statistical learning theory, New York: Springer, (1995).
Google Scholar
[21]
C.Z. Cai, X.J. Zhu, Y.F. Wen, J.F. Pei and G.L. Wang, Predicting the superconducting transition temperature Tc of BiPbSrCaCuOF superconductors by using support vector regression, J. Supercond. Nov. Magn., vol. 23, pp.737-740, (2010).
DOI: 10.1007/s10948-010-0732-x
Google Scholar
[22]
D.O. Whiteson, and N.A. Naumann, Support vector regression as a signal discriminator in high energy physics, Neurocomputing, vol. 55, pp.251-264, (2003).
DOI: 10.1016/s0925-2312(03)00366-7
Google Scholar
[23]
Z. Yuan and B.X. Huang, Prediction of protein accessible surface areas by support vector regression, Proteins, vol. 57, pp.558-564, (2004).
DOI: 10.1002/prot.20234
Google Scholar
[24]
C.Z. Cai, W.L. Wang, L.Z. Sun and Y.Z. Chen, Protei function classification via support vector machine approach, Mathematical Biosciences, vol. 2, no. 185, pp.111-122, (2003).
DOI: 10.1016/s0025-5564(03)00096-8
Google Scholar
[25]
C.Z. Cai, L.Y. Han, Z.L. Ji, X. Chen, Y.Z. Chen. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence, Nucleic. Acids. Res., vol. 31, pp.3692-3697, (2003).
DOI: 10.1093/nar/gkg600
Google Scholar
[26]
C.Z. Cai, W.L. Wang, Y.Z. Chen, Support vector machine classification of physical and biological datasets, Int. J. of Mod. Phys. C, vol. 14, pp.575-585, (2003).
DOI: 10.1142/s0129183103004759
Google Scholar
[27]
J. Song and K. Burrage, Predicting residue-wise contact orders in proteins by support vector regression, BMC Bioinformatics, vol. 7, p.425, (2006).
DOI: 10.1186/1471-2105-7-425
Google Scholar
[28]
Y.F. Wen, C.Z. Cai, X.H. Liu, J.F. Pei, X.J. Zhu and T.T. Xiao, Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression, Corrosion Science, vol. 51, pp.349-355, (2009).
DOI: 10.1016/j.corsci.2008.10.038
Google Scholar
[29]
National Institute for Materials Science, Polymer Database: http: /polymer. nims. go. jp/PoLyInfo.
Google Scholar
[30]
J. Brandrup, E.H. Immergut and E.A. Grulke, Polymer handbook. 4th ed., New York: John and Sons Inc., (1999).
Google Scholar
[31]
J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp.1942-1948, (1995).
Google Scholar
[32]
P.J. Achorn and R.G. Ferrillo, Comparison of thermal techniques for glass transition measurements of polystyrene and cross-linked acrylic polyurethane films, J. Appl . Polym. Sci., vol. 54, pp.2033-2034, (1994).
DOI: 10.1002/app.1994.070541305
Google Scholar
[33]
R.G. Ferrillo and P.J. Achorn, Comparison of thermal techniques for glass transition assignment, J. Appl. Polym. Sci., vol. 64, pp.191-196, (1997).
DOI: 10.1002/(sici)1097-4628(19970404)64:1<191::aid-app17>3.0.co;2-7
Google Scholar
[34]
R. Hagen, L. Salmen, H. Lavebratt and B. Stenberg, Comparison of dynamic mechanical measurements and Tg determinations with two dirrerent instruments, Polymer Testing, vol. 13, pp.113-128, (1994).
DOI: 10.1016/0142-9418(94)90020-5
Google Scholar