Rapid Fabrication of ZnS Thin Film and Microsphere by Microwave-Assisted Chemical Solution Method

Article Preview

Abstract:

A rapid preparation route, microwave-assisted chemical solution method, has been developed for the fabrication of zinc sulfide (ZnS) thin film and powder with shape of microsphere. The as-obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical measurement. XRD results indicated that the structures of as-obtained products are wurtzite. The SEM and AFM photographs show that uniform ZnS microsphere with size of less than 1 μm and homogeneous thin film could be obtained from solution under adequate conditions with thiourea as sulfide source. The results show that microwave-assisted chemical solution method is really a time saving method to fabricate the ZnS thin film and nanostructured microspheres.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

711-715

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. M. Squeiros, R. Machorro and L. E. Regalado, Appl. Opt., vol. 27, p.2549, (1988).

Google Scholar

[2] T. Saitoh, T. Yokogawa and T. Narusawa, Jpn. J. Appl. Phys., vol. 30, p.667, (1991).

Google Scholar

[3] G. A. Landis, J. J. Loferski, R. Beaulieu, P. A. Sekula-Moise, S. M. Vernon, B. Spitzer and C. J. Keavney, IEEE Trans. Electron Devices, vol. 37, p.372, (1990).

DOI: 10.1109/16.46369

Google Scholar

[4] M. A. Kinch, Semicond. Semimet., vol. 18, p.312, (1981).

Google Scholar

[5] A. Chamseddine, M. L. Fearkeily, Thin Solid Films, vol. 247, p.3, (1994).

Google Scholar

[6] F. El-Akkad, M. Abdel Naby, Sol. Energy Mater., vol. 18, p.151, (1989).

Google Scholar

[7] H. Uda, S. lkegami, H. Sonomura, Jpn. J. Appl. Phys., vol. 29, p.30, (1990).

Google Scholar

[8] R.R. Chamberlin, J.S. Skarman, J. Electrochem. Soc., vol. 113, p.86, (1966).

Google Scholar

[9] K. Subba Ramaiah, V. Sundara Raja, Solar Energy Mater. Solar Cells, vol. 32, p.1, (1994).

Google Scholar

[10] R.S. Feigelson, Ph.D. Thesis, Stanford University, Stanford, (1974).

Google Scholar

[11] A. S. Baranski, M. S. Bennet, W. R. Fawcett, J. Appl. Phys., vol. 54, p.6390, (1983).

Google Scholar

[12] Y. F. Nicolaue, Appl. Surf. Sci., vol. 1061, pp.22-23, (1985).

Google Scholar

[13] Y. F. Nicolaue, M. Dupuy, J. Electrochem. Soc., vol. 137, p.2915 (1990).

Google Scholar

[14] W. J. Danaher, L. E. Lyons, G. C. Morris, Sol. Energy Mater., vol. 12, p.137, (1985).

Google Scholar

[15] A. Bayer, D. S. Boyle and P. O'Brien, J. Mater. Chem., vol. 12, pp.2940-2944, (2002).

Google Scholar

[16] U. Ubale, V. S. Sangawar and D K Kulkarni, Bull. Mater. Sci., vol. 30, no. 2, pp.147-151, (2007).

Google Scholar

[17] N. T. Gurin, O. Yu. Sabitov, and A. M. Afanas'ev, Semicond., vol. 41, no. 10, pp.1150-1159, (2007).

Google Scholar

[18] J. Britt, C. Ferekides, Appl. Phys. Lett., vol. 62, p.2851, (1993).

Google Scholar

[19] K. J. Rao, B. Vaidhyanathan, M. Ganguli, and P. A. Ramakrishnan, Chem. Mater., vol. 11, pp.882-895, (1999).

Google Scholar