[1]
S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, Factors that determine the protein resistance of oligoether self-assembled monolayers- internal hydrophilicity, terminal hydrophilicity, and lateral packing density, J. Am. Chem. Soc. 2003, 125, 9359-9366.
DOI: 10.1021/ja034820y
Google Scholar
[2]
L. Li, S. Chen, J. Zheng, B. D. Ratner, and S. Jiang, Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior, J. Phys. Chem. B 2005, 109, 2934-2941.
DOI: 10.1021/jp0473321
Google Scholar
[3]
G. Zhang et al., Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice, Biomaterials 30, 10 , 2009, 1928-(1936).
DOI: 10.1016/j.biomaterials.2008.12.038
Google Scholar
[4]
M. Zheng and X. Huang, Nanoparticles comprising a mixed monolayer for specific bindings with biomolecules, J. Am. Chem. Soc. 2004, 126, 12047-12054.
DOI: 10.1021/ja047029d
Google Scholar
[5]
Y. Liu et al., Synthesis, Stability, and Cellular internalization of gold nanoparticles containing mixed peptide-poly(ethyleneglycol) monolayers; Anal. Chem. 2007, 79, 2221-2229.
DOI: 10.1021/ac061578f
Google Scholar
[6]
E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, A Survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir 2001, 17, 5605-5620.
DOI: 10.1021/la010384m
Google Scholar
[7]
M. Zheng, F. Davidson, and X. Huang, Ethylene glycol monolayer protected nanoparticles for eliminating non-specific binding with biological molecules, J. Am. Chem. Soc. 2003, 125, 7790-7791.
DOI: 10.1021/ja0350278
Google Scholar
[8]
B. Thierry et al., Electrostatic self-assembly of PEG copolymers onto porous silica nanoparticles, Langmuir 2008, 24, 8143-8150.
DOI: 10.1021/la8007206
Google Scholar
[9]
P. Roach, D. Farrar, C. C. Perry, Interpretation of protein adsorption: surface-induced conformational changes , J. Am. Chem. Soc. 2005. , 127 (22), 8168–8173.
DOI: 10.1021/ja042898o
Google Scholar
[10]
M. Zhang, B. Huang, X. Y. Sun and D. W. Pang , Clickable gold ganoparticles as the building block of nanobioprobes, Langmuir, 2010, 26 (12), 10171–10176.
DOI: 10.1021/la100315u
Google Scholar
[11]
T. Peterle, P. Ringler, and M. Mayor, Gold nanoparticles stabilized by acetylene-functionalized multidentate thioether ligands: building blocks for nanoparticle superstructures, Adv. Funct. Mater. 2009, 19, 3497–3506.
DOI: 10.1002/adfm.200901410
Google Scholar
[12]
R. L. Stiles, R. Balasubramanian, S. W. Feldberg, and R. W. Murray, Anion-induced adsorption of ferrocenated nanoparticles, J. AM. CHEM. SOC. 2008, 130, 1856-1865.
DOI: 10.1021/ja074161f
Google Scholar
[13]
A. Labande, J. Ruiz, and D. Astruc, Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity, J. AM. CHEM. SOC. 2002, 124, 1782-1789.
DOI: 10.1021/ja017015x
Google Scholar
[14]
T. Morikita, T. Yamamoto, Electrochemical determination of diffusion coefficient of p-conjugated polymers containing ferrocene unit, J. of Organometallic Chem., 637–639 (2001) 809–812.
DOI: 10.1016/s0022-328x(01)00941-x
Google Scholar
[15]
D. K Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms, New York, (1994).
Google Scholar
[16]
J. Liu, M. N. P. Row, and J. J. Gooding, Heterogeneous electron-transfer kinetics for flavin adenine dinucleotide and ferrocene through alkanethiol mixed monolayers on gold electrodes, J. Phys. Chem. B 2004, 108, 8460-8466.
DOI: 10.1021/jp037494h
Google Scholar