Tm3+/Yb3+ Codoped YAG Glass-Ceramic Formed in Silicate Glass System

Article Preview

Abstract:

Based on the analysis of glass formation region of Y2O3-Al2O3-SiO2 glass system, the glass composition 5Li2O-18Y2O3-29Al2O3-48SiO2 (LYAS) in mol% central in the glass formation region of Y-Al-Si glass system was chosen for present work. The Tm3+ and Yb3+ were introduced as activators in LYAS glass. The glass samples were prepared by the high-temperature solid-state melting and then the derived YAG glass-ceramic was obtained by heat-treating the precursor glass. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis results indicate that the lattice constant of the obtained glass-ceramic is consistent with the pure YAG phase. The primary crystallite size is calculated to be 46nm and the crystal grains grow with excellent orientation (444) in the internal network. The secondary particle size is estimated to be ~8μm and the large grain size is owing to the particles aggregation. The crystal grains distributed uniformly in the glass matrix, and consistent well with the XRD analysis results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

701-705

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Guo. P. S. Devi, B. G. Ravi, J. B. Parise, S. Sampath, and J. C. Hanson, Phase evolution of yttrium aluminium garnet (YAG) in a citrate-nitrate gel combustion process, J. Mater. Chem., vol. 14, pp.1288-1292, (2004).

DOI: 10.1039/b316434a

Google Scholar

[2] Y. Letichevsky, L. Sominski, J. C. Moreno, and A. Gedanken, The sonochemical and microwave-assisted synthesis of nanosized YAG particles, New J. Chem., vol. 29, pp.1445-1449, (2005).

DOI: 10.1039/b507942j

Google Scholar

[3] Y. Li, S. Zhou, H. Lin, X. Hou, and W. Li, Intense 1064 nm emission by the efficient energy transfer from Ce3+ to Nd3+ in Ce/Nd co-doped YAG transparent ceramics, Opt. Mater., vol. 32, pp.1223-1226, (2010).

DOI: 10.1016/j.optmat.2010.04.003

Google Scholar

[4] L. Yang, T. Lu, H. Xu, W. Zhang, and B. Ma, A study on the effect factors of sol-gel synthesis of yttrium aluminum garnet nanopowders, J. Appl. Phys,. vol. 107, p.064903, (2010).

DOI: 10.1063/1.3341012

Google Scholar

[5] L. Wen, X. Sun, Z. Xiu, S. Chen, and C. T. Tsai, Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics, J. Eur. Ceram. Soc., vol. 24, pp.2681-2688, (2004).

DOI: 10.1016/j.jeurceramsoc.2003.09.001

Google Scholar

[6] X. Li, Q. Li, J. Wang, S. Yang, and H. Liu, Synthesis of Nd3+ doped nano-crystalline yttrium aluminum garnet (YAG) powders leading to transparent ceramic, Opt. Mater., vol. 29, pp.528-531, (2007).

DOI: 10.1016/j.optmat.2005.08.045

Google Scholar

[7] T. Huang, B. Jiang, Y. Wu, J. Li, Y. Shi, W. Liu, Y. Pan, Fabrication, microstructure and optical properties of titanium doped YAG transparent ceramic, J. Alloy Compd., vol. 478, pp. L16-L20, (2009).

DOI: 10.1016/j.jallcom.2008.11.157

Google Scholar

[8] J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma and J. Qiu, Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped ytterium aluminium garnet, Phys. Chem. Chem. Phys., vol. 12, pp.13759-13762, (2010).

DOI: 10.1039/c0cp00204f

Google Scholar

[9] J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, Upconversion luminescence of high content Er-doped YAG transparent ceramics, Ceram. Int., vol. 36, pp.193-197. (2010).

DOI: 10.1016/j.ceramint.2009.07.018

Google Scholar

[10] Y. Shen, W. Zhao, T. Sun, K. T. V. Grattan, Characterization of an optical fiber thermometer using Tm3+: YAG crystal, based on the fluorescence lifetime approach, Sensor. Actuat. A, vol. 109, pp.53-59, (2003).

DOI: 10.1016/j.sna.2003.09.006

Google Scholar

[11] M. Liu, S. W. Wang, J. Zhang, L. Q. An, and L. D. Chen, Upconverison luminescence of Y3Al5O12 (YAG): Yb3+, Tm3+ nanocrystals, Opt. Mater., vol. 30, pp.370-374, (2007).

DOI: 10.1016/j.optmat.2006.11.060

Google Scholar

[12] X. Xu, F. Wu, W. Xu, Y. Zong, X. Wang, Z. Zhao, G. Zhou, and J. Xu, Growth and spectral properties of Yb, Tm: YAG crystal, J. Alloys Compd., vol. 462, pp.347-350, (2008).

DOI: 10.1016/j.jallcom.2007.08.053

Google Scholar

[13] D. Deng, S. Xu, S. Zhao, C. Li, H. Wang, and H. Ju, Enhancement of upconversion luminescence in Tm3+/Er3+/Yb3+-codoped glass ceramic containing LiYF4 nanocrystals, J. lumin., vol. 129, pp.1266-1270, (2009).

DOI: 10.1016/j.jlumin.2009.06.026

Google Scholar

[14] S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, YAG glass-ceramic phosphor for white LED (I): background and development, Proc. of SPIE, vol. 5941, p.594111, (2005).

DOI: 10.1117/12.614668

Google Scholar

[15] S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, YAG glass-ceramic phosphor for white LED (II) luminescence characteristics, Proc. of SPIE, vol. 5941, p.594112, (2005).

DOI: 10.1117/12.614681

Google Scholar