[1]
X. Guo. P. S. Devi, B. G. Ravi, J. B. Parise, S. Sampath, and J. C. Hanson, Phase evolution of yttrium aluminium garnet (YAG) in a citrate-nitrate gel combustion process, J. Mater. Chem., vol. 14, pp.1288-1292, (2004).
DOI: 10.1039/b316434a
Google Scholar
[2]
Y. Letichevsky, L. Sominski, J. C. Moreno, and A. Gedanken, The sonochemical and microwave-assisted synthesis of nanosized YAG particles, New J. Chem., vol. 29, pp.1445-1449, (2005).
DOI: 10.1039/b507942j
Google Scholar
[3]
Y. Li, S. Zhou, H. Lin, X. Hou, and W. Li, Intense 1064 nm emission by the efficient energy transfer from Ce3+ to Nd3+ in Ce/Nd co-doped YAG transparent ceramics, Opt. Mater., vol. 32, pp.1223-1226, (2010).
DOI: 10.1016/j.optmat.2010.04.003
Google Scholar
[4]
L. Yang, T. Lu, H. Xu, W. Zhang, and B. Ma, A study on the effect factors of sol-gel synthesis of yttrium aluminum garnet nanopowders, J. Appl. Phys,. vol. 107, p.064903, (2010).
DOI: 10.1063/1.3341012
Google Scholar
[5]
L. Wen, X. Sun, Z. Xiu, S. Chen, and C. T. Tsai, Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics, J. Eur. Ceram. Soc., vol. 24, pp.2681-2688, (2004).
DOI: 10.1016/j.jeurceramsoc.2003.09.001
Google Scholar
[6]
X. Li, Q. Li, J. Wang, S. Yang, and H. Liu, Synthesis of Nd3+ doped nano-crystalline yttrium aluminum garnet (YAG) powders leading to transparent ceramic, Opt. Mater., vol. 29, pp.528-531, (2007).
DOI: 10.1016/j.optmat.2005.08.045
Google Scholar
[7]
T. Huang, B. Jiang, Y. Wu, J. Li, Y. Shi, W. Liu, Y. Pan, Fabrication, microstructure and optical properties of titanium doped YAG transparent ceramic, J. Alloy Compd., vol. 478, pp. L16-L20, (2009).
DOI: 10.1016/j.jallcom.2008.11.157
Google Scholar
[8]
J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma and J. Qiu, Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped ytterium aluminium garnet, Phys. Chem. Chem. Phys., vol. 12, pp.13759-13762, (2010).
DOI: 10.1039/c0cp00204f
Google Scholar
[9]
J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, Upconversion luminescence of high content Er-doped YAG transparent ceramics, Ceram. Int., vol. 36, pp.193-197. (2010).
DOI: 10.1016/j.ceramint.2009.07.018
Google Scholar
[10]
Y. Shen, W. Zhao, T. Sun, K. T. V. Grattan, Characterization of an optical fiber thermometer using Tm3+: YAG crystal, based on the fluorescence lifetime approach, Sensor. Actuat. A, vol. 109, pp.53-59, (2003).
DOI: 10.1016/j.sna.2003.09.006
Google Scholar
[11]
M. Liu, S. W. Wang, J. Zhang, L. Q. An, and L. D. Chen, Upconverison luminescence of Y3Al5O12 (YAG): Yb3+, Tm3+ nanocrystals, Opt. Mater., vol. 30, pp.370-374, (2007).
DOI: 10.1016/j.optmat.2006.11.060
Google Scholar
[12]
X. Xu, F. Wu, W. Xu, Y. Zong, X. Wang, Z. Zhao, G. Zhou, and J. Xu, Growth and spectral properties of Yb, Tm: YAG crystal, J. Alloys Compd., vol. 462, pp.347-350, (2008).
DOI: 10.1016/j.jallcom.2007.08.053
Google Scholar
[13]
D. Deng, S. Xu, S. Zhao, C. Li, H. Wang, and H. Ju, Enhancement of upconversion luminescence in Tm3+/Er3+/Yb3+-codoped glass ceramic containing LiYF4 nanocrystals, J. lumin., vol. 129, pp.1266-1270, (2009).
DOI: 10.1016/j.jlumin.2009.06.026
Google Scholar
[14]
S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, YAG glass-ceramic phosphor for white LED (I): background and development, Proc. of SPIE, vol. 5941, p.594111, (2005).
DOI: 10.1117/12.614668
Google Scholar
[15]
S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, YAG glass-ceramic phosphor for white LED (II) luminescence characteristics, Proc. of SPIE, vol. 5941, p.594112, (2005).
DOI: 10.1117/12.614681
Google Scholar