[1]
R. Bellman . Dynamic programming [M]. Princeton University Press, Princeton, (1957).
Google Scholar
[2]
Qin Yuyuan. Discrete dynamic programming and Bellman algebra [M]. Science Press, 2009. (in Chinese).
Google Scholar
[3]
Bernd Heidergott, Geert Jan Olsder, Jacob Van der Woude. Max Plus at Work—Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and its Applications [M]. Princeton University Press, (2006).
DOI: 10.1515/9781400865239
Google Scholar
[4]
S. Senthil Kumar, V. Palanisamy. A dynamic programming based fast computation Hopfield neural network for unit commitment and economic dispatch [J]. Electric Power Systems Research, 2007, 77: 917–925.
DOI: 10.1016/j.epsr.2006.08.005
Google Scholar
[5]
S. Sitarz. Hybrid methods in multi-criteria dynamic programming [J], Applied Mathematics and Computation, 2006, 180: 38–45.
DOI: 10.1016/j.amc.2005.11.164
Google Scholar
[6]
Trzaskalik T., Sitarz S.,. Discrete dynamic programming with outcomes in random variable structures [J]. European Journal of Operational Research, 2007, 177 (3): 1535-1548.
DOI: 10.1016/j.ejor.2005.10.019
Google Scholar
[7]
Sitarz S. Ant algorithms and simulated annealing for multicriteria dynamic programming [J]. Computers & Operations Research, 2007: 1-14.
DOI: 10.1016/j.cor.2007.09.011
Google Scholar
[8]
K. Ohno. Differential dynamic programming and separable programs [J]. Journal of Optimization Theory and Applications, 1978, 24 (4): 617-637.
DOI: 10.1007/bf00935303
Google Scholar
[9]
B. Villarreal , M. H. Karwan. Multicriteria integer programming: a (hybrid) dynamic programming recursive approach [J]. Mathematical programming, 1981, 21: 204-223.
DOI: 10.1007/bf01584241
Google Scholar
[10]
C. R. Philbrick, Jr, P. K. Kitanidis. Improved dynamic programming methods for optimal control of lumped-paramter stochastic system [J]. Operations Research, 2001, 49 (3): 398-412.
DOI: 10.1287/opre.49.3.398.11219
Google Scholar
[11]
D. Bertsimas, R. Demir. An approximate dynamic programming approach to multidimensional knapsack problems [J]. Management Science, 2002, 48 (4): 550-565.
DOI: 10.1287/mnsc.48.4.550.208
Google Scholar
[12]
D. P. De Farias, B. Van Roy. The linear programming approach to approximate dynamic programming [J]. Operations Research, 2003, 51 (6): 850–865.
DOI: 10.1287/opre.51.6.850.24925
Google Scholar
[13]
M.A. Abo-Sinna. Multiple objective (fuzzy) dynamic programming problems: a survey and some applications [J]. Applied Mathematics and Computation, 2004, 157: 861-888.
DOI: 10.1016/j.amc.2003.08.083
Google Scholar
[14]
Dengfeng LI, Chuntian Cheng. Stability on multiobjective dynamic programming problems with fuzzy parameters in the objective functions and in the constraints [J]. European Journal of Operational research, 2004, 158: 678-696.
DOI: 10.1016/s0377-2217(03)00374-6
Google Scholar
[15]
Xu Fu-xia. Decomposable algorithm for large dynamic programming [J]. Chin. Quart.J. of Math., 2007, 22(2): 220-224.
Google Scholar
[16]
Yuping Wang, Chuangyin Dang. An evolutionary algorithm for dynamic multi-objective optimization [J]. Applied Mathematics and Computation, 2008, 25: 6-18.
DOI: 10.1016/j.amc.2008.05.151
Google Scholar
[17]
B.T. Kien etc. Subgradient of value functions in parametric dynamic programming [J]. European Journal of Operational research, 2009, 193: 12-22.
Google Scholar
[18]
Zhang Peng, The research On the Multiperiod M-SV Portfolio Selection Optimization by Discrete approximate iteration [J]. Economic Mathematics, 2008, 3: 257-264. (in Chinese).
Google Scholar