New Approach for the Continuing Dynamic Programming

Article Preview

Abstract:

The paper proposes the discrete approximate iteration method to solve single-dimensional continuing dynamic programming model. The paper also presents a comparison of the discrete approximate iteration method and bi- convergent method to solve multi-dimensional continuing dynamic programming model. The algorithm is the following: Firstly, let state value of one of state equations be unknown and the others be known. Secondly, use discrete approximate iteration method to find the optimal value of the unknown state values, continue iterating until all state equations have found optimal values. If the objective function is convex, the algorithm is proved linear convergent. If the objective function is non-concave and non-convex, the algorithm is proved convergent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

575-578

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Bellman . Dynamic programming [M]. Princeton University Press, Princeton, (1957).

Google Scholar

[2] Qin Yuyuan. Discrete dynamic programming and Bellman algebra [M]. Science Press, 2009. (in Chinese).

Google Scholar

[3] Bernd Heidergott, Geert Jan Olsder, Jacob Van der Woude. Max Plus at Work—Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and its Applications [M]. Princeton University Press, (2006).

DOI: 10.1515/9781400865239

Google Scholar

[4] S. Senthil Kumar, V. Palanisamy. A dynamic programming based fast computation Hopfield neural network for unit commitment and economic dispatch [J]. Electric Power Systems Research, 2007, 77: 917–925.

DOI: 10.1016/j.epsr.2006.08.005

Google Scholar

[5] S. Sitarz. Hybrid methods in multi-criteria dynamic programming [J], Applied Mathematics and Computation, 2006, 180: 38–45.

DOI: 10.1016/j.amc.2005.11.164

Google Scholar

[6] Trzaskalik T., Sitarz S.,. Discrete dynamic programming with outcomes in random variable structures [J]. European Journal of Operational Research, 2007, 177 (3): 1535-1548.

DOI: 10.1016/j.ejor.2005.10.019

Google Scholar

[7] Sitarz S. Ant algorithms and simulated annealing for multicriteria dynamic programming [J]. Computers & Operations Research, 2007: 1-14.

DOI: 10.1016/j.cor.2007.09.011

Google Scholar

[8] K. Ohno. Differential dynamic programming and separable programs [J]. Journal of Optimization Theory and Applications, 1978, 24 (4): 617-637.

DOI: 10.1007/bf00935303

Google Scholar

[9] B. Villarreal , M. H. Karwan. Multicriteria integer programming: a (hybrid) dynamic programming recursive approach [J]. Mathematical programming, 1981, 21: 204-223.

DOI: 10.1007/bf01584241

Google Scholar

[10] C. R. Philbrick, Jr, P. K. Kitanidis. Improved dynamic programming methods for optimal control of lumped-paramter stochastic system [J]. Operations Research, 2001, 49 (3): 398-412.

DOI: 10.1287/opre.49.3.398.11219

Google Scholar

[11] D. Bertsimas, R. Demir. An approximate dynamic programming approach to multidimensional knapsack problems [J]. Management Science, 2002, 48 (4): 550-565.

DOI: 10.1287/mnsc.48.4.550.208

Google Scholar

[12] D. P. De Farias, B. Van Roy. The linear programming approach to approximate dynamic programming [J]. Operations Research, 2003, 51 (6): 850–865.

DOI: 10.1287/opre.51.6.850.24925

Google Scholar

[13] M.A. Abo-Sinna. Multiple objective (fuzzy) dynamic programming problems: a survey and some applications [J]. Applied Mathematics and Computation, 2004, 157: 861-888.

DOI: 10.1016/j.amc.2003.08.083

Google Scholar

[14] Dengfeng LI, Chuntian Cheng. Stability on multiobjective dynamic programming problems with fuzzy parameters in the objective functions and in the constraints [J]. European Journal of Operational research, 2004, 158: 678-696.

DOI: 10.1016/s0377-2217(03)00374-6

Google Scholar

[15] Xu Fu-xia. Decomposable algorithm for large dynamic programming [J]. Chin. Quart.J. of Math., 2007, 22(2): 220-224.

Google Scholar

[16] Yuping Wang, Chuangyin Dang. An evolutionary algorithm for dynamic multi-objective optimization [J]. Applied Mathematics and Computation, 2008, 25: 6-18.

DOI: 10.1016/j.amc.2008.05.151

Google Scholar

[17] B.T. Kien etc. Subgradient of value functions in parametric dynamic programming [J]. European Journal of Operational research, 2009, 193: 12-22.

Google Scholar

[18] Zhang Peng, The research On the Multiperiod M-SV Portfolio Selection Optimization by Discrete approximate iteration [J]. Economic Mathematics, 2008, 3: 257-264. (in Chinese).

Google Scholar