[1]
F. Franzoni, M. Milani, L. Dr. Montorsi, Cavitating Flows in Hydraulic Multidimensional CFD Analysis, SAE International Journal of Commercial Vehicles, 2009, 1(1), pp.424-436.
DOI: 10.4271/2008-01-2678
Google Scholar
[2]
Q. Chen, H. Xu, L. Quan, CFD Simulation of Noise Characteristic of Coaxial Hydraulic Relief Valve with Three Stages, Zhendong Ceshi Yu Zhenduan, 2009, 29(1), pp.71-73.
Google Scholar
[3]
S.H. Park, Design and Performance Characteristic Analysis of Servo Valve-type Water Hydraulic Popet Valve, Journal of Mechanical Science and Technology, 2009, 23 (9), pp.2468-2478.
DOI: 10.1007/s12206-009-0705-9
Google Scholar
[4]
N.D. Vaughan, D.N. Johnston, L.R. Burnell, The Use of Computational Fluid Dynamics in Hydraulic Valve Design, Design, Circuit, Component and System Design, . New York: John Wiley and Sons, 1992, pp.1-130.
Google Scholar
[5]
Q.F. Wang, Y.M. Li, T.Y. Zhong et al, Pressure Compensation Method of Underwater Hydraulic Stem with Hydraulic Power Unit Being Under Atmospheric Circumstance and Pressure Compensated Valve, Chinese Journal of Mechanical Engineering , 2005, 18 (3), pp.419-423.
DOI: 10.3901/cjme.2005.03.419
Google Scholar
[6]
K. Ito, K. Tnkahashi, K. Inoue, Pressure Distributions and Flow Force on the Body of a Poppet Valve, Fluid Power Systems Modeling and Control. New York: John Wiley and Sons,(1991).
Google Scholar
[7]
Z.X. Wang Y.C. Guo, Poppet Valve Flow Field Analysis and StructureTransformation, Machine Tool and Fluid Pressure, 2006,6, p.167~169.
Google Scholar
[8]
H.X. Lei, L. Quan, The Three-Dimensional Simulation Calculation and Visual Analysis of the Hydraulic Poppet Valve Internal Flow Flied, Mechanical Science and Technology, 2006, 25(4), p.426~429.
Google Scholar