Thermal Error Robust Modeling for High-Speed Motorized Spindle

Article Preview

Abstract:

To improve the manufacturing accuracy of NC machine tool, the thermal error model based on multivariate autoregressive method for a motorized high speed spindle is developed. The proposed model takes into account influences of the previous temperature rise and thermal deformation (input variables) on the thermal error (output variables). The linear trends of observed series are eliminated by the first difference. The order of multivariate autoregressive (MVAR) model is selected by using Akaike information criterion. The coefficients of the MVAR model are determined by the least square method. The established MVAR model is then used to forecast the thermal error and the experimental results have shown the validity and robustness of this model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 466-467)

Pages:

961-965

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. B. Bryan, International Status of Thermal Error Research, Keynote Paper, Annals of CIRP, 39(2), 1990, p.645–656.

DOI: 10.1016/s0007-8506(07)63001-7

Google Scholar

[2] K.C. Fan, J. F. Lin, S. S. Lu, Measurement and Compensation of Thermal Error on a Machining Center, Proceedings of the 29th MATADOR Conference, UK, April 1992, pp.261-268.

DOI: 10.1007/978-1-349-12433-6_33

Google Scholar

[3] J. S. Chen, J. X. Yuan, J. Ni, et al., Real-time Compensation for Time-Variant Volumetric Error on a Machining Center, J. Eng. Ind., 115(4), 1993, pp.472-479.

DOI: 10.1115/1.2901792

Google Scholar

[4] C. L. Lei, Z. Y. Rui, Thermal Error Modeling and Compensating of Motorized Spindle Based on Improved Neural Network, Adv. Mater. Res., 129-131, 2010, pp.556-560.

DOI: 10.4028/www.scientific.net/amr.129-131.556

Google Scholar

[5] J. Zhu, Robust Thermal Error Modeling and Compensation for CNC Machine Tools, Doctor of Philosophy, The University Of Michigan, (2008).

Google Scholar

[6] W. B. Xu, Y. Qi, D. Hou, et al., Performance Degradation Model of Application Server System Based on Time Series Analysis, Acad. J. X. J. T. U., 41(4), 2007, pp.426-429.

Google Scholar

[7] D. Tjostheim, J. Paulsen, Bias of some Commonly Used Time Series Estimates, Biometrika, vol. 70, 1983, pp.389-399.

DOI: 10.2307/2335553

Google Scholar

[8] J. Yang, J. Yuan, J. Ni, Thermal Error Mode Analysis and Robust Modeling for Error Compensation on a CNC Turning Center, Int. J. Mach. Tools Manuf., vol. 39, 1999, pp.1367-1381.

DOI: 10.1016/s0890-6955(99)00008-5

Google Scholar