[1]
R.Wan, L. Wang, M. Wang, X. Su. CNclustering: Clustering with compatible nucleoids. The IEEE 2009 4th International Conference of Computer Science & Education (ICCSE 2009), 2009, pp.797-800.
DOI: 10.1109/iccse.2009.5228158
Google Scholar
[2]
Ji. Liu, Q. Zhang, W. Wang, L. McMillan, J. Prins. Clustering pari-wise dissimilarity data into partially ordered sets. Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Ddata Mining, 2006, pp.637-642.
DOI: 10.1145/1150402.1150480
Google Scholar
[3]
J. Liu, Q. Zhang, W. Wang, L. McMillan, J. Prins. PoClustering: lossless clustering of dissimilarity data. Proceedings of the Seventh SIAM International Conference on Data Mining, 2007.
DOI: 10.1137/1.9781611972771.61
Google Scholar
[4]
E.A. Socolovsky. A dissimilarity measure for clustering high and infinite dimensional data that satisfies the triangle inequality. NASA LaRC Technical Library Digital Repository, 2002, pp.1-12.
Google Scholar
[5]
M.K. Ng, M.J. Li, J.Z. Huang, and Z. He. On the impact of dissimilarity measure in k-Modes clustering algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,Vol.29, No. 3, pp.503-507.
DOI: 10.1109/tpami.2007.53
Google Scholar
[6]
D.B. Hitchcock, Z. Chen. Smoothing dissimilarities to cluster binary data. Computational Statistics and Data Analysis, 2008.
DOI: 10.1016/j.csda.2008.03.012
Google Scholar
[7]
P. Valtchev and J. Euzenat. Dissimilarity measure for collections of objects and values. Advances in Intelligent Data Analysis Reasoning about Data, 2006, pp.259-272..
DOI: 10.1007/bfb0052846
Google Scholar
[8]
R. Wan, L. Wang, Z. Liu, X. Su. Clustering on compatible relation. Application Research of Computers (chinese), 2009, Vol. 26, No.4, pp.1303-1305.
Google Scholar
[9]
R. Wan, L. Wang, Z. Hao. Clustering compatible objects by point neighborhood. 2010 International Conference on Artificial Intelligence and Education (2010 ICAIE), 2010, pp.171-174.
DOI: 10.1109/icaie.2010.5641428
Google Scholar