Investigation of Platelet Adhesion Behavior on Si-N-O Films Synthesized by Unbalanced Magnetron Sputtering

Abstract:

Article Preview

Si-N-O films have drawn researcher’s much attention recently due to their potential superiority in blood compatibility of biomaterials. In this paper, Si-N-O films were synthesized on <100> silicon substrates by pulsed reactive unbalanced magnetron sputtering a single crystal silicon target with high purity in a mixture atmosphere of Ar and N2. XPS and FTIR results showed the Si-N-O films synthesized at higher N2 flux could be described to random bonding model (RBM). In RBM, the Si2p existed in the form of a-Si3N4 and SiNνO4-ν (ν=0,1,2,3,4) components. Platelet adhesion behavior on Si-N-O films was assessed by platelet adhesion test and Lactate dehydrogenase (LDH) assay, qualitatively and quantitatively separately. The correlativity of film chemical structure and blood compatibility was investigated. The results of platelet adhesion and activation showed that the RBM film with higher N/O ratio exhibited favorable blood compatibility. It was shown that the Si-N-O film with specific composition and chemical bonding state was superior in blood compatibility compared to low temperature isotropic carbon (LTIC).

Info:

Periodical:

Advanced Materials Research (Volumes 47-50)

Edited by:

Alan K.T. Lau, J. Lu, Vijay K. Varadan, F.K. Chang, J.P. Tu and P.M. Lam

Pages:

1407-1410

DOI:

10.4028/www.scientific.net/AMR.47-50.1407

Citation:

Z. Y. Shao et al., "Investigation of Platelet Adhesion Behavior on Si-N-O Films Synthesized by Unbalanced Magnetron Sputtering", Advanced Materials Research, Vols. 47-50, pp. 1407-1410, 2008

Online since:

June 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.