First Principles Calculation on Adsorption of S on Impurity Fe (100)

Article Preview

Abstract:

Using the first principles method, which is based on the density function theory (DFT), the structures and electronic properties of S atoms are adsorbed on the Fe (100) surface for X(X is Cr, Ni, Mo, C, Mn ,Si,P and S) impurities in Fe, and their molecular orbital and absorption energies were calculated with the generalized gradient approximation. The results show that S adsorbed on H site for Cr, Ni, Mn, C and Mo impurities in Fe is stable but for Si, S and P is B site. The adsorption energy for Ni in impurity Fe is almost nearby for the purity Fe and the effect for Ni in S absorption on Fe (100) surface is very small. In order to prevent S absorption on Fe surface,we can reduce the percentage of Ni.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 472-475)

Pages:

1538-1543

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.J. Sun; H.T. Fang; J. Davis; R.Hudgins; C.Phillips: Elemental Sulfur Corrosion And Inhibition In the Presence of Sulfur Solvent (NACE International,USA 2011).

Google Scholar

[2] S. S. Baik and B. I. Min:Phys. ReV. B, Vol. 81(2010), p.144101.

Google Scholar

[3] L. Zhong;  R. Wu; A. J. Freeman and G. B. Olson: Phys.Rev.B.Vol. 62(2000), p.13938.

Google Scholar

[4] S. Lu; Q.M. Hu; R Yang and G. B.Olson:Phys. Rev. B.Vol. 82(2010),p.195103.

Google Scholar

[5] G. Rahman,et al: Phys. Rev. B.Vol. 81(2010),p.184423.

Google Scholar

[6] V. Yu. Kazimirov: Phys. Rev. B.Vol. 80(2009),p.214117.

Google Scholar

[7] P.Hohenberg and W. Kohn: Phys. ReV. B Vol.136(1964),p.864.

Google Scholar

[8] W.Kohn and L. J. Sham:Phys. ReV. A, Vol.140(1965), p.1133.

Google Scholar

[9] M.J. Hackett; J.T. Busby and G.S. Was: Metall. Mater. Trans.Vol.39(2008),p.218

Google Scholar

[10] P. E.Blöchl: Phys. ReV. B,Vol.50(1994), p.17953.

Google Scholar

[11] G.Kresse and D. Joubert: Phys. ReV. B Vol.59(1999), p.1758.

Google Scholar

[12] J. P Perdew; K.Burke and M.Ernzerhof: Phys. ReV. Lett. Vol. 77(1996), p.865.

Google Scholar

[13] H. J.Monkhorst and J. D.Pack: Phys. ReV. B Vol. 13(1976), p.5188.

Google Scholar

[14] M.Methfessel and A. T. Paxton: Phys. ReV. B, Vol. 40 (1989), p.3616.

Google Scholar

[15] J. D. Pack and H. J. Monkhorst: Phys Rev B, Vol. 16 (1977), pp.1-748

Google Scholar

[16] G.Henkelman and B. P. Uberuaga: J. Chem. Phys. Vol. 113 (2000), p.9901.

Google Scholar

[17] D. E.Jiang and E. A.Carter: Phys. ReV. B, Vol. 67 (2003), p.214103.

Google Scholar

[18] D. E. Jiang and Emily A. Carter: J. Phys. Chem. B, Vol.108 (2004), p.19140.

Google Scholar

[19] A. Ludsteck: Acta. Cryst., Vol.A28 (1972), p.59.

Google Scholar