First-Principles Study of Energy Band Gap of Graphene-Like B-C-N by Strain

Article Preview

Abstract:

We report a first-principles investigation on BN dopped monolayer graphene sheet and examined the electronic band structure and band gaps in equilibrium state and under strain. The obtained results reveal that the doping of B-N pairs on the hexagonal sheet can open the gap at the Dirac-like point. With heavy doping and more B-N bonds the energy bad gap is found to be larger. Upon tensile deformation, the dopped BCN monolayer sheet represents a strong anisotropic stress-strain relation. Detailed strain-gap relation investigation reveals that the energy band gap presents desperate variation trends for strain applied along and direction. Versatile band-gap modulation schemes can then be obtained through direction-dependent strain engineering of the BCN nanosheet..

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Pages:

1313-1317

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Geim and K. S. Novoselov: Nature Mater. Vol. 6 (2007), p.183

Google Scholar

[2] Hass, J. Feng, R. Li, T: Appl. Phys. Lett. Vol. 89 (2006), p.143106

Google Scholar

[3] Yan, Q. M.; Huang, B.; Yu, J.; Zheng, F. W.; Zang, J.; Wu, J.; Gu, B. L.; Liu, F.; Duan, W. H. Nano Lett. Vol. 7 (2007), p.1469

Google Scholar

[4] Edward McCann. Phys. Rev. B. Vol. 74 (2006), p.161403

Google Scholar

[5] Blase´,.X, Rubio. A, Louie, S. G. Cohen, M. L: Europhys. Lett. Vol. 28 (1994), p.335.

Google Scholar

[6] Pacile´, D.; Meyer, J. C.; Girit, C¸ .O¨ .; Zettl, A. Appl. Phys. Lett. Vol.92 (2008),p.133107

Google Scholar

[7] Han, W. Q.; Wu, L.; Zhu, Y.; Watanabe, K.; Taniguchi, T. Appl.Phys. Lett. Vol. 93 (2008), p.223103

Google Scholar

[8] Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Adv. Mater. Vol. 21 (2009), p.2889

Google Scholar

[9] Lin, Y.; Williams, T. V.; Connell, J. W. J. Phys. Chem. Lett. Vol.1 (2010), p.277

Google Scholar

[10] Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y.; Dresselhaus, M. S.; Li, L. J.; Kong, J. Nano Lett. Vol. 10 (2010), p.4134.

DOI: 10.1021/nl1023707

Google Scholar

[11] Xu, Y. N.; Ching, W. Y.. Phys. Rev. B . Vol. 44 (1991), p.7787

Google Scholar

[12] Er-Jun Kan, Xiaojun Wu, Zhenyu Li, X. C. Zeng, Jinlong Yang, and J. G. Hou. J. Chem. Phys. Vol. 129 (2008), p.084712

Google Scholar

[13] J.-C. Zheng, H.-Q. Wang, A. T. S. Wee, and C. H. A. Huan, Physical Review B 66, 092104 (2002)

Google Scholar

[14] G. Kresse, J. Furthmüller, Comput. Mater. Sci. Vol. 6 (1996), p.15

Google Scholar

[15] J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[16] H.J. Monkhorst, J.D. Pack, Phys. Rev. B. Vol. 13 (1976), p.5188

Google Scholar

[17] L. Xu, Y. Zheng, J. Zheng: Phys. Rev. B Vol. 82 (2010), p.195102

Google Scholar

[18] Y. Zheng, N. Wei, Z. Fan, L. Xu and Z. Huang: Nanotechnology Vol. 22 (2011), p.405701

Google Scholar

[19] Y. Zheng, L. Xu, Z. Fan, N. Wei, Y. Lu and Z. Huang: Current Nanoscience (2011), in press.

Google Scholar

[20] L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Wang and J. Zheng: J. Mater. Chem. (2012)

DOI: 10.1039/C1JM13799A

Google Scholar

[21] N. Wei, Z. Fan, Y. Zheng, L. Xu, H. Wang and J. Zheng: Nanoscale (2011)

DOI: 10.1039/C1NR11200G

Google Scholar