[1]
C. Bocca, A. Barbucci, M. Delucchi, et al. Int. J. Hydrogen Energy 24 (1999), p.21.
Google Scholar
[2]
M. Hamdani, R.N. Singh, P. Chartier. Int. J.Electrochem. Sci. 5 (2010), p.556.
Google Scholar
[3]
J.G. McAlpin, Y. Surendranath, M. Dinca, et al. J. Am. Chem. Soc. 132 (2010), p.6882.
Google Scholar
[4]
M.E.G. Lyons, M.P. Brandon. Int. J. Electrochem. Sci. 3 (2008), p.1425.
Google Scholar
[5]
R.N. Singh, J.F. Koenig, G. Poillerat, et al. J. Electrochem. Soc. 137 (1990), p.1408.
Google Scholar
[6]
E.B. Castro, C.A. Gervasi. Int. J. Hydrogen Energy 25 (2000), p.1163.
Google Scholar
[7]
S.L. Lin, S.F. Xu, J.D. Wang, et al. Acta Chim. Sinica 63 (2005), p.385.
Google Scholar
[8]
A. Askarinejad, A. Morsali, Ultrason. Sonochem. 16 (2009), p.124.
Google Scholar
[9]
H.J. Zhang, X.X. Yuan, L.L. Sun, et al. Int. J. Electrochem. Sci. 35 (2010), p.2900.
Google Scholar
[10]
S.H. Lee, T.W. Kim, D.H. Park, et al. Chem. Mater. 19 (2010), p.5010.
Google Scholar
[11]
J.R. Niu, W. Liu, H.X. Dai, et al. Chin. Sci. Bull. 51 (2006), p.1673.
Google Scholar
[12]
G.F. Zhang, Y.F. Xue, J.X. Xu, et al. Chem. J .Chinese. U. 28 (2007), p.603.
Google Scholar
[13]
G. Wu, N. Li, C.S. Dai, et al. Chin. J. Catal. 25 (2004), p.319.
Google Scholar
[14]
S. Farhadi, S. Sepahvand. J. Alloys Compd. 489 (2010), p.586.
Google Scholar
[15]
J. Prado-Gonjal, A.M. Arevalo-Lopez, E. Moran. Mater. Res. Bull. 46 (2011), p.222.
Google Scholar
[16]
J.F. Gao, Y.F. Liu, X.Q. Liu, et al. J. Chinese Ceram. Soc. 30 (2002), p.75.
Google Scholar
[17]
A.S. Bhatt, D.K. Bhat, C.W. Tai, et al. Mater. Chem. Phys. 125 (2011), p.347.
Google Scholar
[18]
J.Q. Wang, G.D. Du, R. Zeng, et al. Electrochim. Acta 55 (2010), p.4805.
Google Scholar
[19]
L.H. Hoang, P.V. Hai, N.H. Hai, et al. Mater. Lett. 64 (2010), p.962.
Google Scholar
[20]
5 mmol Co(CH3COO)2 4H2O, 5 mmol La(NO3)3 and 20 mmol citric acid were dissolved in 15 ml deionized water, and then ammonia was employed to adjust pH value to 10. The mixture was stirred well and then kept at 50 °C until dried. The dried complex was calcined at 600 °C for 2 h in air. This obtained powder is referred to as LCO-B.
Google Scholar
[21]
The working electrode was fabricated as follows. 0.1 g of LCO was mixed with 0.5 ml of absolute alcohol and 0.5 ml of 5 wt.% Nafion solution (DuPont, USA), then the mixture was treated by ultrasonic stirring to form an oxide ink. The oxide ink was deposited on the surface of the glassy carbon rod (geometric area 0.07 cm2) and dried at room temperature.
Google Scholar
[22]
M. Pontinha, S. Faty, M.G. Walls, et al. Corros. Sci. 48 (2006), p.2971.
Google Scholar
[23]
R.N. Singh, S.K. Tiwari, S.P. Singh, et al. J. Chem. Soc. Faraday Trans. 92 (1996), p.2593.
Google Scholar
[24]
L. Brossard, J. Appl. Electrochem. 21 (1991), p.612.
Google Scholar
[25]
D. Briggs, M.P. Seah. Practical Surface Analysis (Second Edition) - Auger and X-ray Photoelectron Spectroscopy. New York: John Wiley & Sons, 1990, p.607.
Google Scholar
[26]
S.S.Y. Lin, D.H. Kim, M.H. Engelhard, et al. J. Catal. 273 (2010), p.229.
Google Scholar
[27]
M.E.G. Lyons, M.P. Brandon. J. Electroanal. Chem. 641 (2010), p.119.
Google Scholar
[28]
H.J. Wu, Q. Ruan, B.H. Wang, et al. Rare Met. Mater. Eng. 39 (2010), p.1111.
Google Scholar