Simulation of 3D Gas-Liquid Two-Phase Flow Characteristics of Carrousel Oxidation Ditch

Article Preview

Abstract:

In this paper, the gas–liquid two-phase mixture model with the k-ε turbulence model was used to numerically simulate the characteristics of an oxidation ditch. The proposed model concerns with the drag force and the drift velocity. The numerical method is based on a pressure-correction algorithm of the SIMPLE-type. A multigrid technique based on the full approximation storage (FAS) scheme is employed to accelerate the numerical convergence, while the κ-ε model with wall functions is used. The numerical results for velocity and turbulent kinetic energy in the oxidation ditch are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

1265-1268

Citation:

Online since:

February 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Stamou, A., Katsiri, A..Mantziaras, I.. Boshnakov, K., Koumanova, B. and Stoyanov, S., Modelling of an alternating oxidation ditch system. Water Sci Technol, 1999, 39(4): 169–176.

DOI: 10.2166/wst.1999.0203

Google Scholar

[2] Furukawa, S.K.. Tokimori, K., Hirotsuji, J. and Shiono, S., New operational support system for high nitrogen removal in oxidation ditch process. Water Sci Technol, 1998, 37(12): 63–68.

DOI: 10.2166/wst.1998.0502

Google Scholar

[3] Lesage, N., Spérandio, M., Lafforgue, C. and Cockx, A..Calibration and application of a 1-D model for oxidation ditches. Trans IChemE, Part A, Chem Eng Res Des, 2003, 81:1259–1264.

DOI: 10.1205/026387603770866470

Google Scholar

[4] Fayolle, Y., Cockx, A., Gillot, S.. Roustan, M. and Héduit, A.,Oxygen transfer prediction in aeration tanks using CFD. Chem Eng Sci,2007,62(9): 7163–7171.

DOI: 10.1016/j.ces.2007.08.082

Google Scholar

[5] Derco, J., Králik, M., Hutnan, M., Bodík, I. and Cernák, R.. Modelling of the Carrousel plant. Water Sci Technol, 1994, 30(6):345–354.

DOI: 10.2166/wst.1994.0285

Google Scholar

[6] Clercq, B.D., Coen, F., Vanderhaegen, B. and Vanrolleghem, P.A.. Calibrating simple models for mixing and flow propagation in waste water treatment plants. Water Sci Technol, 1999, 39(4): 61–69.

DOI: 10.2166/wst.1999.0190

Google Scholar

[7] Luo, L., Li, W.M., Deng, Y.S., He, Z.C. and Wang, T.. Numerical simulation of a combined oxidation ditch flowusing 3D k–ε turbulence model. J Environ Sci,2005,17(5): 808–812.

Google Scholar

[8] Little, H.X., Daigger, G.T. and Strom, P.F.. Application of computational fluid dynamics to closed-loop bioreactors. I. Characterization and simulation of fluid-flow pattern and oxygen transfer. Water Environ Res,2007,79(6): 600–612.

DOI: 10.2175/106143006x136739

Google Scholar

[9] Clift, R., Grace, J.R., Weber, M.E.. Bubbles, Drops and Particles.Academic Press, New York, 1978.

Google Scholar

[10] Hinze, J.O.. Turbulence. Mcgraw-Hill, New York , 1975.

Google Scholar

[11] Bel Fdhila, R., Simonin, O.. Eulerian prediction of turbulent bubbly flow downstream of a sudden pipe expansion. In: Workshop on Two-phase Flow Predictions,1992,30 March–2 April, Erlangen.

DOI: 10.1016/0894-1777(93)90257-j

Google Scholar

[12] Talvy, S., Cockx, A., Line, A.. Modeling hydrodynamics of gas–liquid airlift reactor. A.I.Ch.E. Journal , 2007,53 (2), 335–353.

DOI: 10.1002/aic.11078

Google Scholar