Calibration of a Density-Dependent Modified Drucker-Prager Cap Model for AZO Powder

Article Preview

Abstract:

AZO (Aluminum doped Zinc Oxide) is widely used to produce transparent conductive coatings for liquid crystal displays, flat panel displays, plasma displays, touch panels, and electronic ink applications. The densification behavior of AZO powder is a critical factor related to the design of the compaction process. In this study, the densification behavior of AZO powder during cold compaction has been investigated in order to calibrate the modified Drucker-Prager Cap (DPC) model for FE simulations. A compaction test with a cylindrical die was carried out, and two failure tests were performed: the diameteral compression test and the uniaxial compression test. AZO compacts with various densities from the compact tests were used as specimens for the failure tests. Based on the experimental results, the parameters of the modified DPC model were determined through simple manipulations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 482-484)

Pages:

1249-1256

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. C. Sinka, J. C. Cunningham and A. Zavaliangos, The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker-Prager Cap model, Powder Technol. 133 (2003) 33-43.

DOI: 10.1016/s0032-5910(03)00094-9

Google Scholar

[2] P. R. Brewin, O. Coube, P. Doremus and J. H. Tweed, Modeling of powder die compaction, Springer-Verlag, London, 2008.

DOI: 10.1007/978-1-84628-099-3

Google Scholar

[3] M. H. Es-saheb, Uniaxial strain rate effects in pharmaceutical powders during cold compaction, J. Mater. Sci. 27 (1992) 4151-4159.

DOI: 10.1007/bf01105119

Google Scholar

[4] A. Michrafy, D. Ringenbcher and P. Tchoreloff, Modelling the compaction behavior of powders: application to pharmaceutical powders, Powder Technol. 127 (2002) 257-266.

DOI: 10.1016/s0032-5910(02)00119-5

Google Scholar

[5] C. –Y. Wu, O. M. Ruddy, A. C. Bentham, B. C. Hancock, S. M. Best and J. A. Elliott, Modelling the mechanical behavior of pharmaceutical powders during compaction, Powder Technol. 152 (2005) 107.

DOI: 10.1016/j.powtec.2005.01.010

Google Scholar

[6] J. C. Cunningham, I. C. Sinka and A. Zavaliangos, Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction, J. Pharm. Sci. 93 (2004) 2022-2039.

DOI: 10.1002/jps.20110

Google Scholar

[7] S. J. Park, H. N. Han, K. H. Oh and D. N. Lee, Model for compaction of metal powders, Int. J. Mech. Sci. 41 (1999) 121-141.

Google Scholar

[8] H. Chtourou, M. Guillot and A. Gakwaya, Modeling of the metal powder compaction process using the cap model. Part I. Experimental material characterization and validation, Int. J. Solids Struct. 39 (2002) 1059-1075.

DOI: 10.1016/s0020-7683(01)00255-4

Google Scholar

[9] W. Bier, M. P. Dariel, N. Frage, S. Hartmann and O. Michailov, Die compaction of copper powder designed for material parameter identification, Int. J. Mech. Sci. 49 (2007) 766-777.

DOI: 10.1016/j.ijmecsci.2006.09.026

Google Scholar

[10] L. H. Han, J. A. Elliot, A. C. Bentham, A. Mills, G. E. Amidon and B. C. Hancock, Amodified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders, Int. J. Solids Struct. 45 (2008) 3088-3106.

DOI: 10.1016/j.ijsolstr.2008.01.024

Google Scholar

[11] T. Sinha, J. S. Curtis, B. C. Hancock and C. Wassgren, A study on the sensitivity of Drucker-Prager Cap model parameters during the decompression phase of powder compaction simulations, Powder Technol. 198 (2010) 315-324.

DOI: 10.1016/j.powtec.2009.10.025

Google Scholar

[12] T. Sinha, R. Bharadwaj, J. S. Curtis, B. C. Hancock and C. Wassgren, Finite element analysis of pharmaceutical tablet compaction using a density dependent material plasticity model, Powder Technol. 202 (2010) 46.

DOI: 10.1016/j.powtec.2010.04.001

Google Scholar