The Influential Factors Analysis of Surface Crack Propagation Behavior of ZrB2-20%SiC-10%AlN Ceramic Subjected to Thermal Shock

Article Preview

Abstract:

The indentation-quench method for investigating surface crack propagation has been studied through both experiments and model. The influential factors for surface crack propagation such as specimen thickness, thermal fatigue property, and quench temperature difference (ΔT) and one single specimen being used throughout a whole test ΔT were surveyed in this paper. Practical results were obtained for ZrB2-20%SiC-10%AlN (ZSA) ultra-high temperature ceramic. The percentage crack growth versus ΔT curves showed stable crack growth in a relative low ΔT interval and unstable crack growth above a certain ΔT, and these regimes were sensitive to the thickness. The total stress intensity factor (KI) combining residual stress and thermal stress considering dynamical behavior during the quenching test was calculated by a surface crack theoretical model, the result of calculation was analyzed influential factors and crack propagation .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-173

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Sciti, M. Brach, A. Bellosi, Scripta. Mater. 53 (2005), p.1297.

Google Scholar

[2] Z. Wang, C. Q. Hong, X. H. Zhang, X. Sun, J. C. Han, Mater. Chem. Phys. 113 (2009), p.338.

Google Scholar

[3] Q. Qu, J. C. Han, W. B. Han, X. H. Zhang, C. Q. Hong, Mater. Chem. Phys. 110 (2008), p.216.

Google Scholar

[4] T. Zhu, W. J. Li, X. H. Zhang, P. Hu, C. Q, Hong, L. Weng, Mater. Chem. Phys. 116 (2009), p.593.

Google Scholar

[5] D. J. Chen, W. J. Li, X. H. Zhang, P. Hu, Jiecai Han, C.Q. Hong, W.B. Han, Mater. Chem. Phys. 116 (2009), p.348.

Google Scholar

[6] S. Y. Du, L. Xu, X. H. Zhang, P. Hu, W. B. Han, Mater. Chem. Phys. 116 (2009), p.76.

Google Scholar

[7] X. H. Zhang, L. Xu, W. B. Han, L. Weng, J. C. Han, S. Y. Du, Solid. State. Sci. 11 (2009), p.156.

Google Scholar

[8] J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, Mater. Chem. Phys. 112 (2008), p.140.

Google Scholar

[9] S. B. Zhou, Z. Wang, S. Xin, J. C. Han, Mater. Chem. Phys. 122 (2010), p.470.

Google Scholar

[10] F. Monteverde, C. Melandri, S. Gicciardi, Mater. Chem. Phys. 100 (2006), p.513.

Google Scholar

[11] A. Rezaie, W. G. Fahrenholtz, G. E. Hilmas, J. Eur. Ceram. Soc. 27 (2007), p.2459.

Google Scholar

[12] A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, D. T. Ellerby, J. Am. Ceram. Soc. 87 (2004), p.1170.

Google Scholar

[13] A. L. Chamberlain, W.G. Fahrenholtz, G. Hilmas, D. Ellerby, Refract. APL. Trans. 1 (2) (2005), p.1.

Google Scholar

[14] M. M. Opeka, I. G. Talmy, J. A. Zaykoski, J. Mater. Sci. 39 (2004), p.5887.

Google Scholar

[15] S. F. Tang, J. Y. Deng, S. J. Wang, W. C. Liu, J. Am. Ceram. Soc. 90 (2007), p.3320.

Google Scholar

[16] S. S. Hwang, A. L. Vasiliev, N. P. Padture, Mater. Sci. Eng. A 464 (2007), p.216.

Google Scholar

[17] M. Kalantar, G. Fantozzi, Mater. Sci. Eng. A. 472 (2008), p.273.

Google Scholar

[18] X. Sun, Z. Wang, P. Hu, Mater. Chem. Phys. 120 (2010), p.417.

Google Scholar

[19] D. Gao, Y. Zhang, C. L. Xu, Y. Song, X. B. Shi, Mater. Chem. Phys. 126 (2011), p.156.

Google Scholar

[20] T. Andersson, D. J. Rowcliffe, J. Am. Ceram. Soc. 79 (1996), p.1509.

Google Scholar

[21] F. Legrendre, F. Osterstock, J. Mater. Sci. Lett. 16 (1997), p.584.

Google Scholar

[22] J. Liang, Y. Wang, G. D. Fang, J. C. Han, J. Alloys Compd. 493 (2010), p.695.

Google Scholar

[23] T. Fet, D. Munz, J. Neumann, Eng. Fract. Mech. 36 (1990), p.647.

Google Scholar

[24] S. H. Meng, H. Jin, J. An, G. H. Bai, W. H. Xie, Solid. State. Sci. 12 (2010), p.1667.

Google Scholar

[25] S. H. Meng, G. Q. Liu, S. L. Sun. Mater. Des. 31 (2010), p.556.

Google Scholar

[26] G. R. Anstis, P. Chantikul, B. R. Lawn, D. B. Marshall, J. Am. Ceram. Soc. 64 (1981), p.533.

Google Scholar

[27] V. Marshall, B. R. Lawn, J. Mater. Sci. 14 (1979), p (2001).

Google Scholar

[28] S. H. Meng, G. Q. Liu, J. An, S. L. Sun. Int. J. Refract. Met. H. 27 (2009), p.813.

Google Scholar

[29] W. B. Han, G. Li, X. H. Zhang, J. C. Han, J. Alloys Compd. 471 (2009), p.488.

Google Scholar

[30] Y. Wang, J. Liang, W. B. Han, X. H. Zhang, J. Alloys Compd. 475 (2009), p.762.

Google Scholar

[31] M. Collin, D. Rowcliffe, Acta Mater. 48 (2000), p.1655.

Google Scholar

[32] M. Saadaoui, C. Olagnon, G. Fantozzi, J. Mater. Sci. Lett., 15 (1996), p.64.

Google Scholar

[33] S. H. Meng, C. P. Liu, G. Q. Liu, G. H. Bai, C. H. Xu, W. H. Xie, Solid. State. Sci. 12 (2010), p.818.

Google Scholar