Photodecomposition of H2S to H2 over Cu2+ Doped Cd0.3In2S4-Zn0.7In2S4 Composite Photocatalysts

Article Preview

Abstract:

The Cd0.3In2S4-Zn0.7In2S4 composite photocatalyst doped with transition metal Cu2+ has been synthesized by hydrothermal method. The physical and photophysical properties of the above-prepared photocatalysts were characterized by XRD, UV-Vis, SPS, SEM and XPS. The XRD peaks of Cu2+ doped Cd0.3In2S4-Zn0.7In2S4 were almost the same as the crystal structure of Cd0.3In2S4-Zn0.7In2S4. The UV-Vis absorption edge of Cu2+ doped Cd0.3In2S4-Zn0.7In2S4 shifted monotonically to long wavelength. The photocatalytic activity of Cu2+ doped photocatalysts had been improved as a result of the enhancement of the charge separation efficiency. The results indicated that the photocatalyst of Cu2+(2wt %)-Cd0.3In2S4/Zn0.7In2S4 exhibited the highest photocatalytic activity with the rate of H2 evolution to be 1141 μmol/(h·g) under visible light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-180

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zaman, A. Chakma: Fuel Process Technol Vol. 41(1995), p.159.

Google Scholar

[2] E. Luinstra: Sulphur Vol. 244(1996), p.37.

Google Scholar

[3] I.A. Gargurevich: Ind Eng Chem Res Vol. 44(2005), p.7706.

Google Scholar

[4] N. Serpone, E. Borgarello, M. Gratzel: J Chem Soc Chem Commun, Vol. 26 (1984), p.342.

Google Scholar

[5] E. Borgarello, N. Serpone, M. Gratzel, etal.: Int J Hydrogen Energy Vol. 10(1985), p.737.

Google Scholar

[6] J. S. Jang, D.W. Hwang, J.S. Lee: Catal Today Vol. 120 (2007), p.174.

Google Scholar

[7] Y.J. Zhang, W. Yan, Y. Wu, et al. : Mater Lett Vol. 62(2008), p.3846.

Google Scholar

[8] F. Peng, L.F. Cai, L. Huang, et al. : J Phys Chem Solids Vol. 69(2008), p.1657.

Google Scholar

[9] G. J. Liu, L. Zhao, L. J. Ma: Catal Commu Vol. 9(2008), p.126.

Google Scholar

[10] G.Q. Guan, T. Kida, K. Kusakabe, et al.: Chem Phys Lett Vol. 385(2004), p.319.

Google Scholar

[11] G.Q. Guan, T. Kida, K. Kusakabe, et al.: Appl Catal, A Vol. 295(2005), p.71.

Google Scholar

[12] X.L. Gou, F. Y. Cheng, J. Chen, et al. : J Am Chem Soc Vol. 128(2006), 7222.

Google Scholar

[13] Z. B. Lei, G. J. Ma, M. Y. Liu, et al.: J Catal 237(2006), p.322.

Google Scholar

[14] S . H . Shen, L . Zhao, Z. H. Zhou, et al. : J Phys Chem C Vol. 112(2008), p.16148.

Google Scholar