The Dispersion Characteristic of 2D Air-Hole-Type Square Photonic Crystal Calculated by Plane Wave Expansion Method

Article Preview

Abstract:

To study the dispersion characteristic of photonic crystal, the eigen-equations matrix of the light transmitting in is gotten in plane-wave expansion method, then the dispersion curves are calculated for two dimensional air-hole-type square photonic crystal respectively. And the influence on the band structures caused by oblique incidence also is studied by change incidence angle. The results of calculations demonstrate that: For two dimensional square structure photonic crystals, the shape of the band structures of TE mode is very similar to that of TM mode, but their positions of band gaps are different, especially the first band gap of TE mode in the square structure in <11> direction is completely staggered with that of the TM mode. Moreover, we get the conclusion that the width of band gap enlarges with the increasing radius of the hole in square photonic crystal in <10> direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-203

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Dong, Y.H. Chen, H.Z. Wang: Acta Phys. Sin. 56 (2007) 268 (in Chinese).

Google Scholar

[2] E. Yablonovitch: Phys. Rev. Lett. 58 (1987) (2059).

Google Scholar

[3] Jo Gjessing, Erik Stensrud Marstein, Aasmund Sudbø: OPT. EXPRESS. 18(2010) 5481-5495.

Google Scholar

[4] S. John: Phys. Rev. Lett. 58 (1987) 2486.

Google Scholar

[5] S. John, R. Rangarajan: Phys. Rev. B 38 (1988) 10101.

Google Scholar

[6] S. Satpathy, Z. Zhang, M.R. Salehpour: Phys. Rev. Lett. 64 (1990) 1239.

Google Scholar

[7] Monica Lira-Cantu, Amine Chafiq, Jeremy Faissat etc: Sol. Energy Mater. Sol. Cells. 95 (2011) 1362-1374.

Google Scholar

[8] P.R. Villeneuve, M. Piché, in: Prog. Quant. Electr., Vol. 18, Pergamon, London, (1994), p.153.

Google Scholar

[9] M. Zhou, X.S. Chen, J. Xu etc, Acta Phys. Sin. 54 (2005) 411 (in Chinese).

Google Scholar

[10] K.M. Ho, C.T. Chan, C.M. Soukoulis, Phys. Rev. Lett. 65 (1990) 3152.

Google Scholar

[11] K.M. Leung, Y.F. Liu: Phys. Rev. Lett. 65 (1990) 2646.

Google Scholar

[12] Z. Zhang, S. Satpathy: Phys. Rev. Lett. 65 (1990) 2650.

Google Scholar

[13] M. Plihal, A.A. Maradudin: Phys. Rev. B 44 (1991) 8565.

Google Scholar

[14] M. Plihal, A. Shambrook: A.A. Maradudin etc, Opt. Commun. 80 (1991) 199.

Google Scholar

[15] P.R. Villeneuve, M. Piché: Phys. Rev. B 46 (1992) 4969.

Google Scholar

[16] Chih-Hung Sun, Peng Jiang, Bin Jiang: Appl. Phys. Let. 92, 061112 (2008).

Google Scholar

[17] Selin H.G. Teo, A.Q. Liu, J. Singh etc: Sensors and Actuators A 13 (2007) 388-394.

Google Scholar

[18] K. Huang, R.Q. Han: Solid Physics, Senior Education Press, Beijing, (1988), p.154.

Google Scholar

[19] Z.Y. Li: Science and Technology of Advanced Materials 6 (2005) 837–841.

Google Scholar

[20] B.S. Xu, S.H. Dang, P.D. Han etc: Opt. Commun. 267 (2006) 363.

Google Scholar

[21] K. Sakoda: Optical Properties of Photonic Crystal, Springer, New York, (2001).

Google Scholar