[1]
Zhou H.T., Li Q.B., Zhao Z.K. Hot workability characteristics of magnesium alloy AZ80-A study using processing map, Materials Science and Engineering A, 2010; 527: 2022-6.
DOI: 10.1016/j.msea.2009.12.009
Google Scholar
[2]
Saniee F.F., Badnava H., Najafabadi S.M.P. Application of T-shape friction test for AZ31 and AZ80 magnesium alloys at elevated temperatures, Materials and Design, 2011; 32: 3221-30.
DOI: 10.1016/j.matdes.2011.02.042
Google Scholar
[3]
Shahzad M., Wagner L. Influence of extrusion parameters on microstructure and texture developments, and their effects on mechanical properties of the magnesium alloy AZ80, Materials Science and Engineering A, 2009; 506: 141-7.
DOI: 10.1016/j.msea.2008.11.038
Google Scholar
[4]
Anaraki M.T., Sanjari M., Akbarzadeh A. Modeling of high temperature rheological behavior of AZ61 Mg-alloy using inverse method and ANN, Material and Design, 2008; 29: 1701-6.
DOI: 10.1016/j.matdes.2008.03.027
Google Scholar
[5]
Heesung Yoon, Seong-Chun Jun, Yunjung Hyun, et al. A comparative study of artificial neural networks and support vector machines for predictiong groundwater levels in a coastal aquifer, Journal of Hydrology, 2011; 396: 128-38.
DOI: 10.1016/j.jhydrol.2010.11.002
Google Scholar
[6]
Zhang L.Q., Li L.X., Ju H., Zhu B.W. Inverse identification of interfacial heat transfer coefficient between the casting and metal mold using neural network, Energy Conversion and Management, 2010; 51: 1898-904.
DOI: 10.1016/j.enconman.2010.02.020
Google Scholar
[7]
Sha W., Edwards K.L. The use of artificial neural networks in materials science based research, Material and Design, 2007; 28: 1747-52.
Google Scholar
[8]
Cortes C., Vapnik V. Support vector networks, Mach Learn, 1995; 20: 273–97.
DOI: 10.1007/bf00994018
Google Scholar
[9]
Yang Z., Gu X.S., Liang X.Y., Ling L.C. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity. Material and Design, 2010; 31: 1042-9.
DOI: 10.1016/j.matdes.2009.09.057
Google Scholar
[10]
Huang Z., Chen H., Hsu C.J. Credit rating analysis with support vector machines and neural networks: a market comparative study, Decision Support Systems, 2004; 37: 534-58.
DOI: 10.1016/s0167-9236(03)00086-1
Google Scholar
[11]
Peng X.J. TSVR: An efficient Twin Support Vector Machine for regression, Neural Networks, 2010; 23: 365-72.
DOI: 10.1016/j.neunet.2009.07.002
Google Scholar
[12]
Li L., Zhou J., Duszczyk J. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion, Journal of Materials Process Technology. 2006; 172: 3372-80.
DOI: 10.1016/j.jmatprotec.2005.09.021
Google Scholar
[13]
Lou Y., Li L.X., Luan N. Flow stress correction of AZ80 magnesium alloy for deformation heating at high strain rates during hot compression, Advanced Materials Research, 2011; 263: 326-1330.
DOI: 10.4028/www.scientific.net/amr.129-131.1326
Google Scholar
[14]
Yang Z., Gu X.S., Liang X.Y., Ling L.C. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity, Materials and Design, 2010; 31: 1042-9.
DOI: 10.1016/j.matdes.2009.09.057
Google Scholar