A Meshfree Weak-Strong-Form Method for Magnetohydrodynamic Flow in a Pipe

Article Preview

Abstract:

In this paper, a meshfree weak-strong form method is presented to compute the fully developed magnetohydrodynmic flow in a pipe. The radial basis function point interpolation approximation is adopted to construct the shape functions. For the nodes whose local quadrature domain is intersect with the natural boundaries, a local weak form of radial point interpolation method is applied. Otherwise, a strong form of meshfree point collocation method is employed. Numerical simulations are carried out for fully developed magnetohydrodynmic flow in a rectangular pipe with arbitrary electrical conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

1883-1887

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Singh, J. Lal: Ind. J. Pure Appl. Math. Vol. 9 (1978), p.101.

Google Scholar

[2] B. Singh, J. Lal: Ind. J. Tech. Vol. 17 (1979), p.184.

Google Scholar

[3] B. Singh, J. Lal: Int. J. Numer. Meth. Engng. Vol. 18 (1982), p.1104.

Google Scholar

[4] A.I. Nesliturk, M. Tezer-Sezgin: Comput. Methods Appl. Mech. Engrg. Vol. 194 (2005), p.1201.

Google Scholar

[5] S.L.L. Verardi, J. M Machado, J.R. Cardoso: IEEE Trans. Magn. Vol. 38 (2002), p.941.

Google Scholar

[6] M. Dehghan, D. Mirzaei: Appl. Numer. Math. Vol. 59 (2009), p.1043.

Google Scholar

[7] X. H. Cai, G.H. Su, S.Z. Qiu: Computers & Fluids Vol. 44(2011), p.153.

Google Scholar

[8] Y. T. Gu, G. R. Liu: Comput Mech, Vol. 35(2005), p.134.

Google Scholar

[9] S. N. Atluri, H. T. Liu, Z. D. Han: CMES, Vol. 14(2006), p.141.

Google Scholar

[10] L. Dragos: Magneto-Fluid Dynamics. Abacus Press, England, (1975).

Google Scholar

[11] J.A. Shercliff: Proc. Camb. Phil. Soc. Vol. 49 (1953), p.136.

Google Scholar

[12] C. C. Chang, T. S. Lundgren: Z. Angew. Math. Phys. Vol. 12 (1961), p.100.

Google Scholar

[13] E. J. Kansa: Comput. Math. Appl. Vol. 19 (1990), p.147.

Google Scholar