Effect of Thermal Process on the Microstructure and Property of Si/Al Composite with High Si Content

Article Preview

Abstract:

50vol. %Si/Al composite was prepared by the separation of liquid and solid in semi-solid. The microstructures of composite were obtained using OM, SEM and EMPA. The primary Si particles distribute uniformly on the Al matrix which surrounds the Si particles and makes-up a continuous network. The thermal expansion coefficient and thermal conductivity of composites experienced different thermal process were examined. It shows that the thermal process history has a significant effect on the microstructure and properties. The residual stress and size of Si particles varied during thermal processing which were responsible for the thermal expansion coefficient alternation. The thermal process of high temperature insostatic pressing reduces the porosity in composite and improves thermal conductivity obviously

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3266-3271

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Carl: JOM(1998), pp.47-51.

Google Scholar

[2] L. Castillo Del, J.P. Hoffman: Aerospace Conference IEEE, Big Sky, MT(2011), pp.1-6.

Google Scholar

[3] Feng Wang, Baiqing Xiong: Materials Characterization Vol. 59(2008), pp.1455-1457.

Google Scholar

[4] D. M Jacobson: Advanced Materials Process Vol. 157(2006), pp.36-41.

Google Scholar

[5] Y. Y. Chen, D.D.L. Chung: Journal of Materials Science Vol. 29(1994), pp.6069-6075.

Google Scholar

[6] Xiaofeng Wang: Trans. Nonferrous Met. Soc. China Vol. 17(2007), p. s1039-s1042.

Google Scholar

[7] Fuliang Yang, Weiping Gan: Chinese Journal of Mechanical Engineering Vol. 52(2006), pp.7-12.

Google Scholar

[8] C.H. Chiang, ChiY.A. Tsao: Materials Science and Engineering A Vol. 396(2005), pp.263-270.

Google Scholar

[9] Di Zhang, Hua Cui, Yanguang Wei: Rare Metals Vol. 24(2005), pp.317-324.

Google Scholar

[10] C.W. Chien, S.L. Lee, J.C. Lin: Mateials Letters Vol. 52(2002), pp.334-341.

Google Scholar

[11] Yiwu Yan, Lin Geng: Journal Material Science Vol. 42(2007), pp.6433-6438.

Google Scholar

[12] E.A. Vieira,M. Ferrante: Acta Materialia Vol. 53(2005), pp.5379-5386.

Google Scholar

[13] C.G. Kang, G.D. Jung: Journal of Material Engineering Pergorm Vol. 10(2001), pp.419-428.

Google Scholar

[14] G. Kim. Byung, S.L. Dong: Materials Chemistry and Physics Vol. 72(2001), pp.42-47.

Google Scholar

[15] Yichang Shou, Jienlin Su: Metallurgical and materials TransactionsA Vol. 31(2000), pp.291-298.

Google Scholar

[16] Nam TranHuu, Requena Guillermo: Composites Part A Vol. 39(2008), pp.856-865.

Google Scholar

[17] Y.L. Shen, A. Needleman, S. Suresh: Metall. Trans. A Vol. 25A (1994), pp.839-841.

Google Scholar

[18] M. Vogelsang, R J A rsenault, R M Fisher: Metall Trans A Vol. 17(1986), pp.379-389.

Google Scholar

[19] Chengsong Cui, Schulz Alwin, Matthaei Ellen: Journal Material Science Vol. 44(2009), pp.4814-4826.

Google Scholar

[20] B.A. Parker, D.S. Saunders, J.R. Griffiths: Metals Forum Vol. 5(1982), pp.48-53.

Google Scholar

[21] Meihui Song, Ziyang Xiu: Aerospace Materials & Technology Vol. 6(2005), pp.44-47, in Chinese.

Google Scholar

[22] Chu Ke: Materials and Design Vol. 30(2009), pp.3497-3503.

Google Scholar

[23] Fuliang Yang: The study on the new lightweight electronic packaging materials with low thermal expansion coefficient and high thermal conductivity. Changsha, China, Central South university, 2007, pp.114-115.

Google Scholar