Material Engineering for Low Power Consumption and Multi-Level Storage in Lateral Phase-Change Memory

Article Preview

Abstract:

The influence of the phase-change materials on the performance of memory devices for low power consumption and multi-level storage was investigated in this work. Doping N into chalcogenide phase-change materials resulted in higher resistivity and low-response to the temperature. The former characteristic leaded to high heating efficiency for phase change via self-heating and thus reduced the power consumption to about 1/20. The latter characteristic enabled easy control of phase change process in the memory device for multi-level storage. 16 distinct resistance levels were demonstrated in our lateral device by adopting a top heater structure

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3286-3290

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Lai: Tech. Dig. IEDM, 2003, p.255.

Google Scholar

[2] Y. Yin, A. Miyachi, D. Niida, H. Sone and S. Hosaka: Jpn. J. Appl. Phys. Vol. 45, (2006), p. L726.

Google Scholar

[3] S.R. Ovshinsky and H. Fritzsche: IEEE. Trans. Electron. Dev. Vol. 20, (1973), p.91.

Google Scholar

[4] P. Zhou, Y. C. Shin, B. J. Choi, S. Choi, C. S. Hwang, Y. Y. Lin, H. B. Lv, X. J. Yan, T. A. Tang, L. Y. Chen and B. M. Chen, Electrochemical and Solid-State Letters Vol. 10 (2007), p. H281.

Google Scholar

[5] P. Zhou, M. Yin, H. J. Wan, H. B. Lu, T. A. Tang and Y. Y. Lin: Appl. Phys. Lett. Vol. 94 (2009), p.053510.

Google Scholar

[6] K. Terabe, T. Hasegawa, T. Nakayama and M. Aono: Nature 433 (2005), p.47.

Google Scholar

[7] Y. Yin, T. Noguchi, H. Ohno and S. Hosaka: Appl. Phys. Lett. Vol. 95 (2009), p.133503.

Google Scholar

[8] G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp and M. Kund: Appl. Phys. Lett. Vol. 95 (2009), p.043108.

DOI: 10.1063/1.3191670

Google Scholar

[9] Y. Yin and S. Hosaka: Microelectron. Eng., Vol. 88 (2011), p.2794.

Google Scholar

[10] F. Rao, Z. Song, M. Zhong, L. Wu, G. Feng, B. Liu, S. Feng and B. Chen: Jpn. J. Appl. Phys. Vol. 46, (2007), p. L25.

Google Scholar

[11] Y. Yin, H. Sone and S. Hosaka: Jpn. J. Appl. Phys. Vol. 44 (2005), p.6208.

Google Scholar

[12] I. Friedrish, V. Weidenhof, W. Njoroge, P. Franz and M. Wuttig: J. Appl. Phys. Vol. 87 (2000), p.4130.

Google Scholar

[13] K. Nakayama, K. Kojima, F. Hayakawa, Y. Imai, A. Kitagawa and M. Suzuki: Jpn. J. Appl. Phys. Vol. 39 (2000), p.6157.

Google Scholar

[14] Y. Yin, D. Niida, K. Ota, H. Sone and S. Hosaka: Rev. Sci. Instrum. Vol. 78 (2007), p.126101.

Google Scholar

[15] D. H. Kang, D. H. Ahn, K. B. Kim, J. F. Webb and K. W. Yi: J. Appl. Phys. Vol. 94 (2003), p.3536.

Google Scholar

[16] Y. Yin, H. Sone and S. Hosaka: Jpn. J. Appl. Phys. Vol. 45 (2006), p.6177.

Google Scholar

[17] F. Rao, Z. Song, M. Zhong, L. Wu, G. Feng, B. Liu, S. Feng and B. Chen: Jpn. J. Appl. Phys. Vol. 46 (2007), p. L25.

Google Scholar

[18] Y. Yin, T. Noguchi and S. Hosaka: Jpn. J. Appl. Phys. Vol. 50 (2011), p.105201.

Google Scholar

[19] Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, et al. : Tech. Dig. IEDM, 2006, p.777.

Google Scholar

[20] Y. Zhang, J. Feng, Y. Zhang, Z. Zhang, Y. Lin, T. Tang, B. Cai and B. Chen: Phys. Status Solidi: Rapid Res. Lett. Vol. 1 (2007), p. R28.

Google Scholar