Facile Synthesis and Enhanced Photocatalysis of Sm Doped TiO2

Article Preview

Abstract:

Sm doped nanocrystalline TiO2 powers were prepared by ultrasonic assisted sol-gel synthesis. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and UV-visible diffuse reflectance spectra (DRS), respectively. Both of undoped TiO2 and Sm-TiO2 samples exclusively consist of primary anatase crystallites, which further form spherical aggregates with average diameters ranging from 11 to 19 nm. The photocatalytic activity of Sm-TiO2 was investigated on the photocatalytic degradation of methyl orange (MO) aqueous solution under UV visible light irradiation. Sm doping improves effectively the photocatalytic activity under UV light irradiation with an optimal doping concentration of 0.5%. The photocatalytic mechanisms of Sm-TiO2 catalysts were tentatively discussed

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3272-3276

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69-96.

Google Scholar

[2] M. Qiao, Q. Chen, S.S. Wu, J. Shen, J. Sol-Gel Sci. Technol. 55 (2010) 377-384.

Google Scholar

[3] J.H. Park, S. Kim, and A.J. Bard, Nano Lett. 6 (2006) 24-28.

Google Scholar

[4] M.A. Barakat, H. Schaeffer, G. Hayes, and S. Ismat-Shah, Appl. Catal., B. 57 (2005) 23-30.

Google Scholar

[5] J. G Yu, H.G. Yu, C.H. Ao, S.C. Lee, J.C. Yu, W.K. Ho, Thin Solid Films. 496 (2006) 273-280.

DOI: 10.1016/j.tsf.2005.08.352

Google Scholar

[6] V. Puddu, R. Mokaya and G. L, Puma, Chem. Commun. 45 (2007) 4749-4751.

Google Scholar

[7] L. Kumaresan, M. Mahalakshmi, M. Palanichamy and V. Murugesan, Ind. Eng. Chem. Res. 49 (2010) 1480-1485.

DOI: 10.1021/ie901191z

Google Scholar

[8] M. Sidheswaran and L.L. Tavlarides, Ind. Eng. Chem. Res. 47 (2008) 3346-3357.

Google Scholar

[9] K. Dai, T.Y. Peng, H. Chen, J. Liu, and L. Zan, Environ. Sci. Technol. 43 (2009) 1540-1545.

Google Scholar

[10] J.M. Xie, D.L. Jiang, M. Chen, D. Li, J.J. Zhu, X.M. Lü, and C.H. Yan, Colloids Surf., A. 372 (2010) 107-114.

Google Scholar

[11] A.W. Xu, Y. Gao and H.Q. Liu, J. Catal. 207 (2002) 151-157.

Google Scholar

[12] D.G. Huang, S.J. Liao, W.B. Zhou, S.Q. Quan, L. Liu, Z.J. He, and J.B. Wan, J. Phys. Chem. Solids. 70 (2009) 853-859.

Google Scholar

[13] T. López, J. Hernandez-Ventura, and R. Gómez, J. Mol. Catal. A: Chem. 167 (2001) 101-107.

Google Scholar

[14] E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, and M. Viscald, J. Am. Chem. Soc. 104 (1982) 2996-3002.

Google Scholar

[15] C.H. Liang, F.B. Li and C.H. Liu, Dyes and Pigments. 76 (2008) 477-484.

Google Scholar