Theoretical Investigations of the High-Pressure Optical Properties of γ-Si3N4

Article Preview

Abstract:

The high-pressure optical properties of the spinel γ-Si3N4 material have been calculated by the plane-wave pseudo-potential method. Our calculated lattice constant is in agreement with the theoretical results and available experimental data. γ-Si3N4 can be used as anti-reflection coatings in the energy range of 10eV~21eV due to high reflectivity. The electromagnetic wave (frequency: 8eV~17eV) can easily traverse the γ-Si3N4 crystal. The peak of the energy loss function is located around 22eV. More importantly, our calculated dielectric constant is 4eV (at 30GPa), which is in agreement with the calculated value.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 490-495)

Pages:

3874-3877

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Zerr, G. Miehe, G. Serghioum, M. Schwarz, E. Kroke, R. Reidel, H. Fuess, P. Kroll and R. Boehler: Nature Vol. 400 (1999), p.340.

DOI: 10.1038/22493

Google Scholar

[2] J. Z. Jiang, F. Kragh, D. J. Frost, K. Ståhl and H. Lindelov: J. Phys.: Condens. Matter Vol. 13 (2001), p. L515.

Google Scholar

[3] H. L. He, T. Sekine, T. Kobayashi and H. Hirosaki: Phys. Rev. B Vol. 62 (2000), p.11412.

Google Scholar

[4] B. Xu, J. Dong, P. McMillan, O. Shebanova and A. Salamat: Phys. Rev. B Vol. 84 (2011), p.014113.

Google Scholar

[5] A. Kuwabara, K. Matsunaga and I. Tanaka: Phys. Rev. B Vol. 78 (2008), p.064104.

Google Scholar

[6] W. Y. Ching, S. D. Mo, L. Z. Ouyang and P. Rulis: J. Am. Ceram. Soc. Vol. 85 (2002), p.75.

Google Scholar

[7] W. Y. Ching, S. D. Mo and L. Z. Ouyang: Phys. Rev. B Vol. 63 (2001), p.245110.

Google Scholar

[8] W. Y. Ching: J. Am. Ceram. Soc. Vol. 73 (1990), p.3135.

Google Scholar

[9] Y. C. Ding, A. P. Xiang, X. J. He, X. H. Zhu and X. F. Hu: Chin. J. Chem. Phys. Vol. 23 (2010), p.201.

Google Scholar

[10] N. Troullier and J. L. Martins: Phys. Rev. B Vol. 43 (1991), p. (1993).

Google Scholar

[11] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[12] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[13] T. Sekine, H. He, T. Kobayashi, M. Zhang and F. Xu: Appl. Phys. Lett. Vol. 76 (2000), p.3706.

Google Scholar

[14] J. S. Toll: Phys. Rev. Vol. 104 (1956), p.1760.

Google Scholar