First-Principles Study on the Structural, Electronic and Elastic Properties of Alloyed Austenite with Co and Ni

Article Preview

Abstract:

The crystal structure of alloyed austenite distorted after Ni and Co replaced Fe. The crystal type of austenite changed from cubic structure to tetragon or orthorhombic structure due to the influence of Co and Ni. The ratio (B/G) for γ-Fe (C) is equal to 2.841, which is higher than that for other alloyed austenite with Co and Ni. The workability of alloyed austenite with Co and Ni are poorer than γ-Fe (C). The formation of alloyed austenite needs more energy than γ-Fe (C) at ambient conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 503-504)

Pages:

684-687

Citation:

Online since:

April 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. L. Liu, C. H. Liu, L. M. Zhao. Valence electron structure of 40CrNiMo and its influences on phase transformation. Science in China Ser A-Math Sci. 32 (1989) 867-875.

Google Scholar

[2] T. S. Dai, Z. L. Liu, Y. B. Qu. The valence electron structure of austenite in low alloy ultrahigh-strength steels and its influences on kinetics of phase transformation. Sci China Ser A-Math. 33 (1990) 1132-1137.

Google Scholar

[3] Y. P. Song ,G.Q. Liu, Z.L. Li, C.M. Feng. Valence Electron Structure Calculation of γ-Fe-C Unit Cell in High Temperature Austenite. Journal of Iron and Steel Research. 19 (2007)41-44.

Google Scholar

[4] Y.Z. Zheng, F.C. Zhang. Effect Of Heterogeneous Distribution Of C And Alloying Elements On γ/α' Transformation in a Fe-Mn-Cr-C Alloy. Acta Metallurgica Sinica. 27 (1991) 241-245.

Google Scholar

[5] D.H. Jack, K.H. Jack, Carbides and Nitrides in Steel. Mater. Sci. Eng. 11 (1973) 1.

Google Scholar

[6] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Phys. Rev. B 41 (1990) 7892.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[7] J.P. Perdew, K. Burke, W. Ernzerhof. Generalized gradient approximation made simple Phy. Rev. Let. 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[8] H. Jmonkhorst, J.D. Pack. Special points for Brillouin-zone integrations. Phys. Rev.B. 13 (1976) 5188.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[9] F.D. Murnaghan, The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA. 30 (1944) 244.

DOI: 10.1073/pnas.30.9.244

Google Scholar

[10] Z.L. Zhang, R.H. Yu. An Analysis Of Valence Electron Structure of Fe-C Martensite. Acta Metallrugica Sinica. 20 (1984) 279.

Google Scholar

[11] Z.J. Wu, X.F. Hao, X.J. Liu, J. Meng. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations. Phys. Rev. B 76 (2007) 054115.

Google Scholar

[12] O. Beckstein, J.E. Klepeis, G.L.W. Hart, O. Pankratov, First-principles elastic constants and electronic structure of α-Pt2Si and PtSi Phys. Rev. B, 63 (2001)134112.

Google Scholar

[13] Z.J. Wu, X.F. Hao, X.J. Liu, J. Meng. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B, 76 (2007) 064115.

Google Scholar