The Review of Computational FE Software for Creep Damage Mechanics

Article Preview

Abstract:

This paper reports a review on the computational (finite element) software for creep damage analysis. Firstly, it summarizes the current state of how to obtain such computational capability then it concludes with a preference of in-house software. It further reviews the validation practice. Finally, it completes with an outlines of the approach to be used in the developing in-house FE software.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

495-499

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Altenbach, G. Kolarow, O. K. Morachkovsky and K. Naumenko, Computational Mechanics, Vol. 25, (2000), P. 87-98.

DOI: 10.1007/s004660050018

Google Scholar

[2] R. Mustata, R.J. Hayhurst, D.R. Hayhurst and F. Vakili-Tahami, Arch Appl Mech, Vol. 75, (2006), P. 475-495.

DOI: 10.1007/s00419-005-0423-4

Google Scholar

[3] D.R. Hayhurst, R.J. Hayhurst and F. Vakili-Tahami, PROC. R. SOC. A, Vol. 461, (2005), P. 2303-2326.

Google Scholar

[4] X. Ling, S.T. Tu and J.M. Gong, International Journal of Pressure Vessels and Piping, Vol. 77, (2000), P. 243-248.

Google Scholar

[5] D.R. Hayhurst, Modelling Simul. Mater. Sci. Eng., Vol. 2, (1994), P. 421-438.

Google Scholar

[6] A.A. Becker, T.H. Hyde, W. Sun and P. Andersson, Computational Materials Science, Vol. 25, (2002), P. 34-41.

Google Scholar

[7] R.J. Hayhurst, F. Vakili-Tahami and D.R. Hayhurst, International Journal of Pressure Vessels and Piping, Vol. 86, (2009), P. 475-485.

DOI: 10.1016/j.ijpvp.2009.04.015

Google Scholar

[8] L.E. Schwer, Guide for Verification and Validation in Computational Solid Mechanics, 1st ed. The American Society of Mechanical Engineers Standard Committee, USA. July (2007).

Google Scholar

[9] Y. Tao, Y, Masataka and H. J. Shi, International Journal of Pressure Vessels and Piping Vol. 86, (2009), P. 578–584.

Google Scholar

[10] M.S. Herrn and G. Yevgen, Development of a creep-damage model for non-isothermal long-term strength analysis of high-temperature components operating in a wide stress range, ULB Sachsen-Anhalt, Kharkiv, July (2008).

Google Scholar

[11] A. Holm, N. Konstantin and G. Yevgen, in Proceeding in Applied Mathematics and Mechanics, (2008).

Google Scholar

[12] M. Hanke and A. Dawani, Simulation eines Kielluftschiffes: Berechnung der Hüllenstabilität, Proceedings of the 17th CAD-FEM Users' Meeting, Sonthofen, (1999).

Google Scholar

[13] A.A. Becker, T.H. Hyde and W. Sun, FE-DAMAGE Users Mannual, University of Nottingham, UK, (1994).

Google Scholar

[14] D. R., Hayhurst, P. R. Dimmer and G. J. Morrison, Trans R Soc London A, Vol. 311, (1984), P. 103–129.

Google Scholar

[15] K. Naumenko and H. Altenbach, Modeling of Creep for Structural Analysis, Springer Berlin Heidelberg New York, (2004).

Google Scholar

[16] M.T. Wong, Three-Dimensional Finite Element Analysis of Creep Continuum Damage Growth and Failure in Weldments, PhD thesis, University of Manchester, UK, (1999).

Google Scholar

[17] L. Machiels and M.O. Devile, ACM Transactions on Mathematical Software, Vol. 23, (1997), P. 32-49.

Google Scholar

[18] A. Bellen and M. Zennaro, Mathematik, Vol. 47, (1985), P. 301-316.

Google Scholar

[19] H.T. Yao, et al., Nuclear Engineering and Design, Vol. 55, (2007), P. 1969-(1986).

Google Scholar

[20] I.M. Smith and D.V. Griffiths, Programming the Finite Element Method (FOURTH EDITION), JohnWiley& Sons, Ltd, (2004).

Google Scholar

[21] A. Edelman and H. Murakami, Math. Comp, Vol. 64, (1995), P. 763-776.

Google Scholar

[22] J. E. Akin, Engineering Computations, Vol. 16 (1999), P. 26-48.

Google Scholar

[23] NAG Fortran Library, The Numerical Algorithms Group Ltd, Oxford, UK.

Google Scholar