Recent Advances in Hydrogen Storage Materials

Article Preview

Abstract:

An overview of recent advances in hydrogen storage is presented in this review. The main focus is on metal hydrides, liquid-phase hydrogen storage material, alkaline earth metal NC/polymer composites and lithium borohydride ammoniate. Boron-nitrogen-based liquid-phase hydrogen storage material is a liquid under ambient conditions, air- and moisture-stable, recyclable and releases H2 controllably and cleanly. It is not a solid material. It is easy storage and transport. The development of a liquid-phase hydrogen storage material has the potential to take advantage of the existing liquid-based distribution infrastructure. An air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen and rapid kinetics (loading in <30 min at 200°C). Moreover, nanostructuring of Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. The Co-catalyzed lithium borohydride ammoniate, Li(NH3)4/3BH4 releases 17.8 wt% of hydrogen in the temperature range of 135 to 250 °C in a closed vessel. This is the maximum amount of dehydrogenation in all reports. These will reduce economy cost of the global transition from fossil fuels to hydrogen energy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1438-1441

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Conte, A. Iacobazzi, M. Ronchetti and R. Vellone: Journal of Power Sources Vol. 100( 2001), p.171.

Google Scholar

[2] R.M. Dell and D.A.J. Rand: Journal of Power Sources Vol. 100( 2001), p.2.

Google Scholar

[3] B.D. McNicola, D.A.J. Rand and K.R. Williams: Journal of Power Sources Vol.100( 2001), p.47.

Google Scholar

[4] A. Boudghene Stambouli and E. Traversa: Renewable and Sustainable Energy Reviews Vol. 6 (2002), p.297.

Google Scholar

[5] I.P. Jain, Chhagan Lal and Ankur Jain: International Journal of Hydrogen Energy Vol. 35(2010), p.5133.

Google Scholar

[6] D. Chandra, J.J. Reilly, and R. Chellappa: JOM Vol. 58 (2006), p.26.

Google Scholar

[7] L. Schlapbach, A. Zuttel: Nature Vol. 414( 2001), p.23.

Google Scholar

[8] J.M. Ogden. Annual Review of Energy and the Environment Vol. 24(1999), p.227.

Google Scholar

[9] U. Eberle, M. Felderhoff and F. Schüth: Angewandte Chemie International Edition Vol.48( 2009), p.6608.

Google Scholar

[10] Jorgensen, S. W. Curr. Opin: Solid State Mater. Sci. Vol.15 (2011), p.39.

Google Scholar

[11] Graetz: J. Chem. Soc. Rev. Vol. 38(2009), p.73.

Google Scholar

[12] S. McWhorter, C. Read, G. Ordaz, N. Curr.Opin. Stetson: Solid State Mater. Sci. Vol. 15(2011), p.29.

Google Scholar

[13] F.H. Stephens, V. Pons and R.T. Baker: Dalton Trans. (2007), p.2613.

DOI: 10.1039/b703053c

Google Scholar

[14] D. Zhao, D. Yuan, H-C. Zhou: Energy Environ. Sci. Vol. 1 (2008), p.222.

Google Scholar

[15] Wei Luo, Patrick G. Campbell, Lev N. Zakharov and Shih-Yuan Liu. Journal of the American chemical society Vol. 133 (2011), p.19326.

Google Scholar

[16] Ki-Joon Jeon, Hoi Ri Moon, Anne M. Ruminski, Bin Jiang, Christian Kisielowski, Rizia Bardhan and Jeffrey J. Urban. Nature Materials, published online: 13 March 2011.

DOI: 10.1038/NMAT2978

Google Scholar

[17] Xueli Zheng, Guotao Wu, Wen Li, Zhitao Xiong, Teng He, Jianping Guo, Hua Chen and Ping Chen: Energy & Environmental Science Vol. 4( 2011), p.3593.

Google Scholar

[18] S. Cheung, W-Q. Deng, A. C. T. van Duin, and W. A. J.Goddard: Phys. Chem. A, Vol.109(2005), p.851.

Google Scholar

[19] R.W.P. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. van Dillen and K.P.J. Am.Jong: Chem. Soc. Vol. 127( 2005), p.16675.

DOI: 10.1021/ja054569h

Google Scholar

[20] A.M. Seayad, D.M. Antonelli: Advanced materials Vol. 16(2004), p.765.

Google Scholar

[21] R.A. Andrievski: Physics-Uspekhi Vol. 50 (2007), pp.691-704.

Google Scholar

[22] M. Fichtner, O. Fuhr, O. Kircher and J. Rothe: Nanotechnology Vol. 14(2003), p.778.

Google Scholar

[23] M. Jurczyk,L. Smardz and I. Okonska: International Journal of Hydrogen Energy Vol. 33(2008), p.374.

Google Scholar

[24] A. Zaluska, L. Zaluski, J.O. Sortm-olsen: Journal Applied Physics A. Vol. 72(2001), p.157.

Google Scholar

[25] C.W. Hamilton, R.T. Baker, A. Staubitz and I. Manners: Chem. Soc. Rev. Vol. 38(2009), p.279.

Google Scholar

[26] T. B. Marder: Angewandte Chemie International Edition Vol. 46(2007), p.8116.

Google Scholar

[27] M. Bowden, T. Curr. Opin. Autrey: Solid State Mater. Sci. Vol. 15(2011), p.73.

Google Scholar

[28] S.S. Mal, F.H. Stephens and R.T. Baker: Chem. Commun. Vol. 47(2011), p.2922.

Google Scholar