The Progress of Hybrid Proton Exchange Membranes Prepared by SPAEKs for Direct Methanol Fuel Cells

Article Preview

Abstract:

This review summarizes efforts in developing proton exchange membranes (PEMs) with excellent electrochemical fuel cell performance prepared by SPAEK in proton exchange membrane fuel cell (PEMFC) applications. Over the past few decades, much polyelectrolyte has been extensively studied to improve the properties as alternatives with lower cost and considerable performances for PEMFC. Sulfonated poly(aryl ether ketone) (SPAEK), fell into this category, which offers the attribute of adjustable proton conductivity, excellent mechanical and thermal stability. The discussion will cover crosslinking, organic-inorganic nanocomposite, layer-by-layer approaches.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1442-1445

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Costamagna, S. Srinivasan, J. Power Sources Vol.102 (2001) , p.253.

Google Scholar

[2] V. Mehta, J.S. Cooper, J. Power Sources Vol.114 (2003) , p.32.

Google Scholar

[3] G. Alberti, M. Casciola, Annu. Rev. Mater. Res. Vol.33 (2003) , p.129.

Google Scholar

[4] M. Rikukawa, K.P. Sanui, Polym. Sci. Vol. 25 (2000) , p.1463.

Google Scholar

[5] J. Qiao, T. Hamaya, T. Okada, Polymer Vol.46 (2005) , p.10809.

Google Scholar

[6] H.L. Cai, K. Shao, S.L. Zhong, C.J. Zhao, G. Zhang, X.F. Li, H. Na, J. Membr. Sci. Vol.297 (2007) , p.162.

Google Scholar

[7] W. Zhang, V. Gogel, K.A. Friedrich, J. Kerres, J. Power Sources Vol.155 (2006) , p.3.

Google Scholar

[8] Liu B, Robertson GP, Kim DS, Guiver MD, Hu W, Jiang Z. Macromolecules Vol.40(2007) , p.1934.

Google Scholar

[9] Wang, F.; Chen, T. L.; Xu, J. P. Macromol. Chem. Phys. Vol.199(1998) , p.1421.

Google Scholar

[10] Wang, F.; Li, J.; Chen, T. L.; Xu, J. P. Polymer, Vol.40(1999) , p.795.

Google Scholar

[11] Liu, S. Z.; Wang, F.; Chen, T. L.; et al. Macromol. Rapid Commun.Vol.22(2001) , p.579.

Google Scholar

[12] Jiang, H. Y.; Chen, T. L.; et al. Polymer Vol.39(1998) , p.6079

Google Scholar

[13] Lin HD, Zhao CJ, Cui ZM, Ma WJ, Fu TZ, Na H, et al. J Power Sources Vol.193(2009) , p.507.

Google Scholar

[14] Wang F, Hickner M, Ji Q, Harrison W, Mecham J, Zawodzinski TA, McGrath JE. Macromol Symp Vol.175(2001) , p.387.

DOI: 10.1002/1521-3900(200110)175:1<387::aid-masy387>3.0.co;2-1

Google Scholar

[15] Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE. J Membr Sci Vol.197(2002) , p.231.

Google Scholar

[16] W. Zhang, V. Gogel, K.A. Friedrich, J. Kerres, J. Power Sources Vol.155 (2006) , p.3.

Google Scholar

[17] S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson, M.D. Guiver, J. Membr. Sci. Vol.233 (2004) , p.93.

Google Scholar

[18] S.-J. Yang, W. Jang, C. Lee, Y.G. Shul, H. Han, J. Polym. Sci., Part B: Polym. Phys. Vol.43 (2005) , p.1455.

Google Scholar

[19] C.H. Lee, H.B. Park, Y.S. Chung, Y.M. Lee, B.D. Freeman, Macromolecules Vol.39 (2006) , p.755.

Google Scholar

[20] Hasiotis C, Deimede V, Kontoyannis C. Electrochim Acta Vol.46(2001) , p.2401.

Google Scholar

[21] Allcock HR, Fitzpatrick RJ, Salvati L. Chem Mater Vol.3(1991) , p.1120.

Google Scholar

[22] Mikhailenko SD, Wang K, Kaliaguine S, Xing P, Robertson GP, Guiver MD. J Membr Sci Vol.233(2004) , p.93.

Google Scholar

[23] C.J. Zhao, H.D. Lin, Z.M. Cui, X.F. Li, H. Na, W. Xing, J. Power Sources Vol.194 (2009) , p.168.

Google Scholar

[24] C.N. Kostelansky, J.J. Pietron, M.S. Chen, W.J. Dressick, K. Swider-Lyons, D.E. Ramaker, R.M. Stroud, C.A. Klug, B.S. Zelakiewicz, T.L. Schull, J. Phys. Chem. B Vol.110 (2006) , p.21487.

DOI: 10.1021/jp062663u

Google Scholar

[25] T.R. Farhat, P.T. Hammond, Adv. Funct. Mater. Vol. 15 (2005) , p.945.

Google Scholar

[26] T.R. Farhat, P.T. Hammond, Chem. Mater. Vol. 18 (2006), p.41.

Google Scholar