Self-Assembly of Large Scale CdS/TiO2 Film Photocatalyst

Article Preview

Abstract:

CdS/TiO2 composite films with different Cd:Ti atomic ratio were prepared by a new straightforward particulate layer-by-layer method. Titanium dihydroxide and thiourea were used as precursors. Raman and X-ray photoelectron spectroscopy analysis for the composite films revealed that the TiO2 formed from titanium precursor retarded the crystal growth of CdS. Luminescence and UV–vis absorption spectra investigation showed that emission and absorption band of CdS/TiO2 blue shifted as crystal size of CdS decreased. Furthermore, hydrogen formation curves revealed that hydroxyl of CdS/TiO2 films plays an important role in water splitting reaction under both UV and visible light irradiations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1692-1698

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Brown and P.V. Kamat: J. Am. Chem. Soc. Vol. 130 (2008), p.8890.

Google Scholar

[2] H.G. Kim, P.H. Borse, W. Choi and J.S. Lee: Angew Chem. Int. Ed. Vol. 44 (2005), p.4585.

Google Scholar

[3] W.F. Shangguan and A. Yoshida: J. Phys. Chem. B Vol. 106 (2002), p.12227.

Google Scholar

[4] W.F. Shangguan and A. Yoshida: J. Phys. Chem. B Vol. 106 (2002), p.12227.

Google Scholar

[5] S. Chen, M. Paulose, C. Ruan, G.K. Mor, O.K. Varghese, D. Kouzoudis and C.A. Grimes: J. Photochem. Photobiol. A: Chem. Vol. 177 (2006), p.177.

Google Scholar

[6] J.S. Jang, H.G. Kim, P.H. Borse and J.S. Lee: Int. J. Hydrogen Energy Vol. 32 (2007), p.4786.

Google Scholar

[7] J.S. Jang, H.G. Kim, U.A. Joshi, J.W. Jang and J.S. Lee: Int. J. Hydrogen Energy Vol. 33 (2008), p.5975.

Google Scholar

[8] C.X. Li, K.P. O'Halloran, H.Y. Ma and S.L. Shi: J. Phys. Chem. B Vol. 113 (2009), p.8043.

Google Scholar

[9] Q.G. Zeng, Z.J. Ding and Z.M. Zhang: J. Lumin. Vol. 118 (2006), p.301.

Google Scholar

[10] V. Singh and P. Chauhan: Chalcogenide Lett. Vol. 6 (2009), p.421.

Google Scholar

[11] T. Tanaka, K. Teramura, T. Yamamoto, S. Takenaka, S. Yoshida and T. Funabiki: J. Photochem. Photobio. A Vol. 148 (2002), p.277.

Google Scholar

[12] N. Mahdjoub, N. Allen, P. Kelly and V. Vishnyakov: J. Photochem. Photobio. A Vol. 211 (2010), p.59.

Google Scholar

[13] G. Gouadec and P. Colomban: Prog. Cryst. Growth Charact. Mater. Vol. 53 (2007), p.1.

Google Scholar

[14] G. Hota, S.B. Idage and K.C. Khilar: Colloids Surfaces A Vol. 293 (2007), p.5.

Google Scholar

[15] C.X. Li, Z.H. Jiang and Z.P. Yao: Dalton Trans. Vol. 39 (2010), p.10692.

Google Scholar

[16] M. Vijay, V. Selvarajan, K.P. Sreekumar, J.G. Yu, S.W. Liu and P.V. Ananthapadmanabhan: Sol. Energy Mat. Sol. C. Vol. 93 (2009), p.1540.

Google Scholar

[17] D. Deng, M.M. Shi, F. Chen, L. Chen, X.X. Jiang and H.Z. Chen: Sol. Energy Vol. 84 (2010), p.771.

Google Scholar

[18] A.R. Loukanov, C.D. Dushkin, K.I. Papazova, A.V. Kirov, M.V. Abrashev and E. Adachi: Colloids Surfaces A Vol. 245 (2004), p.9.

DOI: 10.1016/j.colsurfa.2004.06.016

Google Scholar

[19] Z. Yu, J. Li, D.B. O'Connor, L.W. Wang and P.F. Barbara: J. Phys. Chem. B Vol. 107 (2003), p.5670.

Google Scholar

[20] M. Maleki, M.S. Ghamsari, S. Mirdamadi and R. Ghasemzadeh: Quantum Electr. Optoele. Vol. 10 (2007), p.30.

Google Scholar

[21] K.R. Gopidas, M. Bohorquez and P. V. Kamat: J. Phys. Chem. Vol. 94 (1990), p.6435.

Google Scholar

[22] S.H. Szezepankiewicz, A.J. Colussi and M. R. Hoffmann: J. Phys. Chem. B Vol. 104 (2000), p.9842.

Google Scholar