Preparation and Photocatalysis Property of P-N Coupled Photocatalyst CoO/CdS/TiO2

Article Preview

Abstract:

In this paper, p-n coupled photocatalyst CoO/CdS/TiO2 was prepared by method of impregnation. The structure and optical properties of CdS/TiO2 and CoO/CdS/TiO2 were characterized by XRD, SEM, BET and UV–vis DRS. The photocatalytic activities of the photocatalysts were evaluated by photocatalytic degradation of methyl orange, and the effect of photocorrosion of CdS in CoO/CdS/TiO2 was investigated by analyzing the cadmium concentration in the supernate collected after photocatalytic reactions. The results showed that p-n coupled photocatalyst CoO/CdS/TiO2 not only showed higher efficiency in degradation of methyl orange than CdS/TiO2, but also exhibited resistance against cadmium leakage under light irradiation. The mechanism of the photocorrosion-delaying by p–n junction was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1677-1682

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima and K. Honda: Nature Vol. 238 (1972), p.37

Google Scholar

[2] F. Bosc, D. Edwards, N. Keller, V. Keller and A. Ayral: Thin Solid Films Vol. 495(2006), p.272

DOI: 10.1016/j.tsf.2005.08.361

Google Scholar

[3] L. Wu, J. C. Yu and X. Z. Fu: Journal of Molecular Catalysis A: Chemical Vol. 244(2006), p.25

Google Scholar

[4] J. R. Darwent and G. Porter: J. Chem. Soc. Chem. Commun. Vol. 4(1981), p.145

Google Scholar

[5] M. Matsumura, Y. Sato and H. Tsubomura: J. Phys. Chem. Vol. 87(1983), p.3807

Google Scholar

[6] M. Sathish, B. Viswanathan and R. P. Viwanath: International Journal of Hydrogen Energy Vol. 31(2006), p.891

Google Scholar

[7] N. G. Dhere and A. H. Jahagirdar: Thin Solid Films Vol. 480-481(2005), p.462

Google Scholar

[8] T. Wagner, T. Waitz, J. Roggenbuck, M. Fröba, C.-D. Kohl and M. Tiemann: Thin Solid Films Vol. 515(2007), p.8360

DOI: 10.1016/j.tsf.2007.03.021

Google Scholar

[9] M.A. Gondal, A. Hameed, Z. H. Yamani and A. Suwaiyan: Applied Catalysis A: General Vol. 268(2004), p.159

Google Scholar

[10] J. Nayak, S.N. Sahu, J. Kasuya and S. Nozaki: Applied Surface Science Vol. 254(2008), p.7215

Google Scholar

[11] D. J. Fermıín, E. A. Ponomarev and L. M. Peter: Journal of Electroanalytical Chemistry Vol. 473(1999), p.192

Google Scholar

[12] Y.-H. Yang, N. Ren, Y.-H. Zhang and Y. Tang: Journal of Photochemistry and Photobiology A: Chemistry Vol. 201(2009), p.111

Google Scholar

[13] Y. Bessekhouad, D. Robert and J. V. Weber: Journal of Photochemistry and Photobiology A: Chemistry Vol. 163(2004), p.569

Google Scholar

[14] S. F. Chen, S. J. Zhang, W. Liu and W. Zhao: Journal of Hazardous Materials Vol. 155(2008), p.320

Google Scholar

[15] S. F. Chen, W. Zhao, W. Liu, H. Y. Zhang and X. L. Yu: Chemical Engineering Journal Vol. 155(2009), p.466

Google Scholar

[16] S. F. Chen, W. Zhao, W. Liu and S. J. Zhang: Applied Surface Science Vol. 255(2008), p.2478

Google Scholar

[17] Y. M. Wu, M. Y. Xing, J. L. Zhang and F. Chen: Applied Catalysis B: Environmental Vol. 97(2010), p.182

Google Scholar

[18] S. F. Chen, W. Zhao, W. Liu, H. Y. Zhang, X. L. Yu and Y. H. Chen: Journal of Hazardous Materials Vol. 172(2009), p.1415

Google Scholar