A Model for the Prediction of Bubble Detachment Diameters in Vapor Compression Distillation Assembly

Article Preview

Abstract:

The vapor compression distillation assembly is a phase-change water recovery technology which will reclaim water from urine, whose evaporator is a rotating container involving boiling heat transfer. The production rate of the apparatus depend on the bubble detachment diameter. In the article, based on the force equilibrium of bubble, the bubble detachment diameter formula is obtained, in which, the flow velocity along axis is neglected because it is very slow. The formula is very significant to the design of the apparatus and other relative apparatus.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 516-517)

Pages:

841-845

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Fritz, Physik. Zeifschr 36, 379-384 (1935).

Google Scholar

[2] N. Zuber, U.S. AEC Rep. AECU 4439, Tech. Inf. Serv, Oak Ridge, Tenn. (1959).

Google Scholar

[3] B. E. Staniszewski, Bubble growth and departure in nucleate boiling, Tech. Rept. No. 16, MIT, Cambridge, Mass. (1959).

Google Scholar

[4] K. Nishikawa and K. Urakawa, Mem. Fat. Engn, q Kyushu Univ. 19,63-71 (1960).

Google Scholar

[6] C. Y. Han and P. Griffith, The mechanism of heat transfer in nucleate pool boiling, Rept. 7613-19, MIT, Cambridge, Mass(1962).

Google Scholar

[9] R. Cole and H. L. Shulman, Bubble departure diameters at subatmospheric pressures, Chemical Engineering Progress Symposium Series 62(64), 616 (1966).

Google Scholar

[10] R. Cole, Bubble frequencies and departure volumes at subatmospheric pressures, A.I.Ch.E. JI 13, 779-783 (1967).

DOI: 10.1002/aic.690130434

Google Scholar

[11] R. Cole and W. M. Rohsenow, Correlation of bubble departure diameters for boiling of saturated liquids, Chemical Engineering Progress Symposium Series 65(92), 211-213 (1969).

Google Scholar

[12] G. Kocamustafaogullari, Int. Comm. Heat Mass Transfer 10,501-509 (1983).

Google Scholar

[13] J. B. Roll and J. E. Myers, A.I.Ch.E. JI 10, 530-534 (1964).

Google Scholar

[14] J. F. Klausner, R. Mei, D. M. Bernhard and L. Z. Zeng, Int. J. Heal Mass Transfer 36,651-662 (1993).

Google Scholar

[15] S. J. D. Van Stralen and R. Cole. Boiling Phenomena, Vol. I. Hemisphere, New York (1979).

Google Scholar

[16] L. Z. ZENG, J. F. KLAUSNER and R. MEIT , Pool boiling ,University of Florida, (1992)

Google Scholar