A Continuous Preparation Method of Spirulina platensis Phenolic Compounds and Polysaccharides Using Supercritical Carbon Dioxide Technology

Article Preview

Abstract:

Spirulina platensis was mixed with ethanol at a ratio of 1:10 (w v-1) for 24 h to yield ethanol extract. An orthogonal design was performed at three different temperatures (40, 50 and 60oC), three different pressure levels (10, 20 and 30 MPa) and three different flow rate of Spirulina extract liquor (1, 2 and 3 ml min-1). The carbon dioxide (SC-CO2) flow rate was maintained at 6 ml min-1. The highest selectivity of phenols and polysaccharides occurred at the operation temperature 60oC and pressure 30 MPa. Extract was also fractionated using SC-CO2 under the following operating conditions: 60oC and a pressure of 30, 15, 10 or 5 MPa into residual (R), F1, F2, or F3 fractions, respectively. The highest concentration of phenolic compounds was obtained in F3 fraction and the highest concentration of total polysaccharides was retained in R. F3 fraction contained the highest levels of total phenol contents and thus exhibited the greatest antioxidant ability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 524-527)

Pages:

2229-2237

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.D. Karkos, S.C. Leong, C.D. Karkos, N. Sivaji, D.A. Assimakopoulos, Spirulina in Clinical Practice: Evidence-Based Human Applications. Evidence-Based Complementary and Alternative Medicine (2008), September 14.

DOI: 10.1093/ecam/nen058

Google Scholar

[2] R. Deng, T.J. Chow, Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovascular Therapeutics Vol. 28 (2010), p. e33-45.

DOI: 10.1111/j.1755-5922.2010.00200.x

Google Scholar

[3] T. Hayashi, K. Hayashi, M. Maeda, I. Kojima, Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. Journal of Natural Products Vol. 59 (1996), pp.83-87.

DOI: 10.1021/np960017o

Google Scholar

[4] J.W. King, Advances in critical fluid technology for food processing. Food Science and Technology Today Vol. 14 (2000), pp.186-191.

Google Scholar

[5] M.G. Sajilata, R.S. Singhal, M.Y. Kamat, Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. Journal of Food Engineering Vol. 84 (2008), pp.321-326.

DOI: 10.1016/j.jfoodeng.2007.05.028

Google Scholar

[6] R.L. Mendes, A.D. Reis, A.F. Palavra, Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: Comparison with organic solvent extraction. Food Chemistry Vol. 99 (2006), pp.57-63.

DOI: 10.1016/j.foodchem.2005.07.019

Google Scholar

[7] J.A. Mendiola, D. García-Martínez, F. Javier Rupérez, P.J. Martín-Álvarez, G. Reglero, A. Cifuentes, C. Barbas, E. Ibañez, F. J. Señoráns, Enrichment of vitamin E from Spirulina platensis microalga by SFE. Journal of Supercritical Fluids Vol. 43 (2008), pp.484-489.

DOI: 10.1016/j.supflu.2007.07.021

Google Scholar

[8] L. Wang, B. Pan, J. Sheng, J. Xu, Q. Hu, Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chemistry Vol. 105 (2007), pp.36-41.

DOI: 10.1016/j.foodchem.2007.03.054

Google Scholar

[9] J.C. Sheng, F. Yu, Z.H. Xin, L.Y. Zhao, X.J. Zhu, Q.H. Hu, Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chemistry Vol. 105 (2007), pp.533-539.

DOI: 10.1016/j.foodchem.2007.04.018

Google Scholar

[10] S.S.H. Rizvi, Z.R. Yu, A. Bhaskar, L. Rosenberry, Phase equilibria and distribution coefficients of δ–lactone in supercritical carbon dioxide. Journal of Food Science Vol. 58 (1993), pp.996-1000.

DOI: 10.1111/j.1365-2621.1993.tb06097.x

Google Scholar

[11] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine Vol. 26 (1999), pp.1231-1237.

DOI: 10.1016/s0891-5849(98)00315-3

Google Scholar

[12] V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidant by means of Folin-Ciocalteu reagent. Methods in Enzymology Vol. 299 (1999), pp.152-178.

DOI: 10.1016/s0076-6879(99)99017-1

Google Scholar

[13] S.K. Eo, Y.S. Kim, C.K. Lee, S.S. Han, Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidium. Journal of Ethnopharmacology Vol. 68 (1999), pp.175-181.

DOI: 10.1016/s0378-8741(99)00086-0

Google Scholar

[14] E. Reverchon, I. De Marco, Review Supercritical fluid extraction and fractionation of natural matter. Journal of Supercritical Fluids Vol. 38 (2006), pp.146-166.

DOI: 10.1016/j.supflu.2006.03.020

Google Scholar

[15] M.S. Miranda, R.G. Cintra, S.B.M. Barros, J.M. Filho, Antioxidant activity of the microalga Spirulina maxima. Brazilian Journal of Medical and Biological Research Vol. 31 (1998), pp.1075-1079.

DOI: 10.1590/s0100-879x1998000800007

Google Scholar

[16] A.H. Li, K. Cheng, C. Wong, F. King-Wai, C. Feng, J. Yue, Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry Vol. 102 (2007), pp.771-776.

DOI: 10.1016/j.foodchem.2006.06.022

Google Scholar

[17] M. Plaza, A. Cifuentes, E. Ibanez, In the search of new functional food ingredients from algae. Trends in Food Science & Technology Vol. 19 (2008), pp.31-39.

DOI: 10.1016/j.tifs.2007.07.012

Google Scholar