Preparation and Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg20Ni10-xMx (M=Co, Cu; x=0-4) Alloys

Article Preview

Abstract:

In order to obtain a nanocrystalline and amorphous structure in the Mg2Ni-type alloy, the Ni in Mg2Ni alloy has been partially substituted by M (M=Co, Cu), and the melt spinning has been used to fabricate the Mg20Ni10-xMx (M=Co, Cu; x=0-4) hydrogen storage alloys. The microstructures of the alloys were characterized by XRD, SEM and HRTEM. The effects of substituting Ni with M (M=Co, Cu) on the gaseous and electrochemical hydrogen storage kinetics of the as-spun alloys were investigated. The results indicate that the as-spun (M=Co) alloys display a nanocrystalline and amorphous structure, while the as-spun (M=Cu) alloys hold an entire nanocrystalline structure, suggesting that the substitution of Co for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of M (M=Co, Cu) for Ni exerts a trifling impact on the hydriding kinetics of the alloys, but it renders a marked enhancement of dehydriding capacity and kinetics. Furthermore, the measurements of the high rate discharge ability (HRD) and the hydrogen diffusion coefficient (D) as well as the electrochemical impedance spectra (EIS) of the alloys exhibit that the electrochemical kinetics of the as-spun (30 m/s) alloys is significantly ameliorated by substituting Ni with M (M=Co, Cu).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Niu, D.O. Northwood, Enhanced electrochemical properties of ball-milled Mg2Ni electrodes, Int. J. Hydrogen Energy 27 (2002), 69-77.

DOI: 10.1016/s0360-3199(01)00077-5

Google Scholar

[2] S. Mokbli, M. Abdellaoui, H. Zarrouk, M. Latroche, A. Percheron Guéganb, Hydriding and electrochemical properties of amorphous rich MgxNi100−x nanomaterial obtained by mechanical alloying starting from Mg2Ni and MgNi2, J. Alloys Compd. 460 (2008).

DOI: 10.1016/j.jallcom.2007.05.073

Google Scholar

[3] S.I. Yamaura, H.Y. Kim, H. Kimura, A. Inoue, Y. Arata, Thermal stabilities and discharge capacities of melt-spun Mg–Ni-based amorphous alloys, J. Alloys Compd. 339 (2002) 230-235.

DOI: 10.1016/s0925-8388(01)01998-3

Google Scholar

[4] H.S. Chen, Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metall. 22 (1974) 1505-1511.

DOI: 10.1016/0001-6160(74)90112-6

Google Scholar

[5] T. Spassov, U. Köster, Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy, J. Alloys Compd. 279 (1998), 286.

DOI: 10.1016/s0925-8388(98)00680-x

Google Scholar

[6] L.J. Huang, G.Y. Liang, Z.B. Sun, D.C. Wu, Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys, J. Power Sources 160 (2006) 684-687.

DOI: 10.1016/j.jpowsour.2005.12.072

Google Scholar

[7] Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg10Ni2Mm alloys, J. Alloys Compd. 466 (2008) 176-181.

DOI: 10.1016/j.jallcom.2007.11.128

Google Scholar

[8] J.H. Woo, K.S. Lee, Electrode characteristics of nanostructured Mg2Ni-type alloys prepared by mechanical alloying, J. Electrochem Soc. 146 (1999) 819-823.

DOI: 10.1149/1.1391687

Google Scholar

[9] M. Y Song, C.D. Yim, S.N. Kwon, Preparation of Mg23. 5Ni10(Cu or La) hydrogen-storage alloys by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy 33 (2008) 87-92.

DOI: 10.1016/j.ijhydene.2007.09.018

Google Scholar

[10] A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis, M. Jurczyk, Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al), J. Alloys Compd. 364 (2004) 283-288.

DOI: 10.1016/s0925-8388(03)00544-9

Google Scholar

[11] G. Zhong, B.N. Popov, R.E. White, Application of Porous Electrode Theory on Metal Hydride Electrodes in Alkaline Solution, J. Electrochem. Soc. 142 (1995) 2695-2698.

Google Scholar