Preparation and Characterization of Cellulose Nanowhiskers in N, N-Dimethylacetamide

Article Preview

Abstract:

Reinforcement of polymer with plant whiskers is a way of improving mechanical properties. Cellulose nanowhiskers (CNW) were separated from commercially available wood pulpboard. Different microscopy techniques, thermal gravimetric analysis, X-ray diffraction were used to study the structure and properties of the microcrystalline cellulose (MCC) and CNW. Because of the high specific surface area of CNW, the increases in total amorphous character of the cellulose decrease the relative degree of crystallinity. After chemical and physical treatment, the CNW in the length of several μm and diameters ranging from 20 - 50 nm was obtained. Both the initial decomposing temperature and temperature of maximum decomposing rate of CNW is higher than MCC, but lower than wood pulpboard.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-38

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. S. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules. 6 (2005) 612-626.

DOI: 10.1021/bm0493685

Google Scholar

[2] D. N. S. Hon, Cellulose: a random walk along its historical path, Cellulose. 1 (1994) 1-25.

DOI: 10.1007/bf00818796

Google Scholar

[3] E. Sjoström, Wood chemistry fundamentals and applications, Academic Press, New York, 1993.

Google Scholar

[4] R. H. Newman, Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths, Solid State Nucl. Magn. Reson. 15 (1999) 21-29.

DOI: 10.1016/s0926-2040(99)00043-0

Google Scholar

[5] C. H. Park, Y. K. Kang, S. S. Im, Biodegradability of cellulose fabrics, J. Appl. Polym. Sci. 94 (2004) 248-253.

DOI: 10.1002/app.20879

Google Scholar

[6] C. F. Liu, F. Xu, J. X. Sun, J. L. Ren, S. Curling, R. C. Sun, P. Fowler, M.S. Baird, Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne), Carbohyd. Res. 341 (2006) 2677-2687.

DOI: 10.1016/j.carres.2006.07.008

Google Scholar

[7] I. J. De Souza, J. Bouchard, M. Methot, R. Berry, D. S. Argyropoulos, Carbohydrate in oxygen delignification part i: changes in cellulose crystallinity, J. Pulp Pap. Sci. 28 (2002) 167-170.

Google Scholar

[8] E. Gümüskaya, M. Usta, H. Kirci, The effects of various pulping conditions on crystalline structure of cellulose in cotton linters, Polym. Degrad. Stabil. 81 (2003) 559-564.

DOI: 10.1016/s0141-3910(03)00157-5

Google Scholar

[9] Y. Sun, L. Lin, H. B. Deng, J. Z. Li, B. H. He, R. C. Sun, P. K. Ouyang, Structural changes of bamboo cellulose in formic acid, Bioresources. 3 (2008) 297-315.

Google Scholar

[10] H. B. Zhao, J. H. Kwak, Z. C. Zhang, M. H. Brown, B. W. Arey, J. E. Holladay, Studying cellulose fibre structure by SEM, XRD, NMR and acid hydrolysis, Carbohydr. Polym. 68 (2007) 235-241.

DOI: 10.1016/j.carbpol.2006.12.013

Google Scholar