Synthesis of Co3O4/RGO as Catalyst for Degradation of Orange II in Water by Advanced Oxidation Processes Based on Sulfate Radicals

Article Preview

Abstract:

One step synthesis reduced graphene oxide and cobalt oxides nanocomposites (Co3O4/RGO) in ethylene glycol as heterogeneous catalyst. The Co3O4/RGO was confirmed by X-ray diffraction (XRD). And Co3O4/RGO exhibits an unexpected, surprisingly high catalytic activity in degradation of Orange II in water by advanced oxidation processes based on sulfate radicals and 100% decomposition could be achieved in 16 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-272

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Geim, K.S. Novoselov. Nat. Mater. Vol. 6 (2007), p.183.

Google Scholar

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov. Science Vol. 306(2004), p.666.

Google Scholar

[3] C. Lee, X. D. Wei, J. W. Kysar. Science Vol. 321(2008,) p.385.

Google Scholar

[4] G. Eda, M. Chhowalla. Adv. Mater. Vol. 22(2010), p.2392.

Google Scholar

[5] T. Ramanathan, A. A. Abdala, S. Stankovich. Nat. Nano Vol. 3(2008), 3p. 227.

Google Scholar

[6] F. Schedin, A. K. Geim, S. V. Morozov Nat. Mater. Vol. 6(2007), p.652.

Google Scholar

[7] E. Yoo, T. Okata, T. Akita. Nano Lett. Vol. 9(2009), p.2255.

Google Scholar

[8] Q. Wu, Y. X. Xu, Z. Y. Yao. ACS. Nano Vol. 4(2010) p.1963.

Google Scholar

[9] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu. Nano Lett. Vol. 9 (2009), p.1752.

Google Scholar

[10] Y. Liu, C.Y. Liu, Y. Liu. Appl. Surf. Sci. Vol. 257 (2011), p.5513.

Google Scholar

[11] M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman,. J. Am. Chem. Soc. Vol. 131 (2009), p.3611.

DOI: 10.1021/ja807449u

Google Scholar

[12] M. Choucair, P. Thordarson, J.A. Stride. Nat. Nanotechnol. Vol. 4 (2009), p.30.

Google Scholar

[13] S. Stankovich, R. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff. J. Mater. Chem. Vol. 16(2006), p.155.

Google Scholar

[14] A. Lerf, H. He, M. Forster, J. Klinowski. J. Phys. Chem. B Vol. 102 (1998), p.4477.

Google Scholar

[15] P. G. Liu, K. C. Gong, P. Xiao, & M. Xiao. J. Mater. Chem., Vol. 10, (2000), p.933.

Google Scholar

[16] M.Z. Kassaee, E. Motamedi, M. Majdi. Chem. Eng. J. Vol. 172 (2011), p.540.

Google Scholar

[17] J.H. Sun, S.P. Sun, J.Y. Sun, R.X. Sun, L.P. Qiao, H.Q. Guo, M.H. Fan. Ultrason. Sonochem. Vol. 14 (2007), p.761

Google Scholar

[18] E. Chamarro, A. Marco, S. Esplugas. Water Res. Vol. 35 (2001), p.1047.

Google Scholar

[19] G.P. Anipsitakis, D.D. Dionysiou. Appl. Catal., B 54 (2004), 155-163.

Google Scholar

[20] W.S. Hummers, R.E. Offeman. J. Am. Chem. Soc. Vol. 80(6) (1958), pp.1339-1339.

Google Scholar

[21] J. Yan, T. Wei, W.M. Qiao, B. Shao, Q.K. Zhao, L.J. Zhang, Z.J. Fana. Electrochim. Acta Vol. 55 (2010), p.6973.

Google Scholar