Synthesis, Characterization and Catalytic Application of Mesoporous PW/SBA-15 for Epoxidation of α-Pinene

Article Preview

Abstract:

Supported phosphotungstic acid SBA-15 were synthesized under hydrothermal conditions and characterized by X-ray diffraction (XRD), N2 adsorption, transmission electron micrographs (TEM), scanning electron micrographs (SEM), Fourier-transform infrared spectroscopy (FT-IR). XRD and FT-IR results indicated that the substitution of tungsten occurs in the silicate framework structure of SBA-15. TEM and SEM investigations confirmed the presence of ordered high degree ordering hexagonal structure in the novel PW/SBA-15 material. Their catalytic activity was evaluated in the epoxidation of α-pinene. 2,3-epoxypinane was the main product. The results of epoxidation of α-pinene by PW(40)/SBA-15 were fellows: the conversion rate of α-pinene and the selectivity were 87.61% and 79.90% respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

2382-2386

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.T. Kresge, M.E. Leonowicz W.J. Roth, J.C. Vartli, J.S. Beck, Nature.359 (1992) 710.

Google Scholar

[2] X. Yuan, J. Shen, G. Li, Chin. J. Catal. 23 (2002) 9.

Google Scholar

[3] W. Liu, S.Y. Lai, H.X. Dai, S.J. Wang, H.Z. Sun, C.T. Au, Catal. Today 131 (2008) 450.

Google Scholar

[4] H.Y. Huang, C.L. Yang, H.X. Zhang, M.C. Liu, Micropor. Mesopor. Mater.111(2008) 254.

Google Scholar

[5] N. Petkov, N. Stock, T. Bein, J. Phys. Chem. B 109 (2005) 10737.

Google Scholar

[6] H.H.P. Yiu, C.H. Botting, N.P. Botting, P.A. Wright, PCCP 3 (2001) 2983.

Google Scholar

[7] S.S. Wu, J. Wang, W.H. Zhang, X.Q. Ren, Catal. Lett. 125 (2008) 308.

Google Scholar

[8] Y.S. Jun, Y.S. Huh, H.S. Park, A. Thomas, S.J. Jeon, E.Z. Lee, H.J. Won, W.H. Hong, S.Y. Lee, Y.K. Hong, J. Phys. Chem. C 111 (2007) 13076.

Google Scholar

[9] R. van Grieken, J.A. Melero, G. Morales, Appl. Catal. A: Gen. 289 (2005) 143.

Google Scholar

[10] M. Li, P.J. Pham, C.U. Pittman Jr, T.Y. Li, Anal. Sci. 24 (2008) 1245.

Google Scholar

[11] A. Lapkin, B. Bozkaya, T. Mays, L. Borello, Catal. Today 81 (2003) 616–618.

Google Scholar

[12] A. Kukovecz, Zs. Balogi, Z. Konya, M. Toba, P. Lentz, S.-I. Niwa, F. Mizukami, A. Molnar, J.B. Nagy, I. Kiricsi, Appl. Catal. A: Gen. 228 (2002) 83–94.

DOI: 10.1016/s0926-860x(01)00969-3

Google Scholar

[13] B.S. Lane, K. Burgess, Chem. Rev. 103 (2003) 2457–2473.

Google Scholar

[14] Q.H. Xia, H.Q. Ge, C.P. Ye, Z.M. Liu, K.X. Su, Chem. Rev. 105 (2005) 1603–1662.

Google Scholar

[15] M. Sasidhara, P. Wu, T. Tatsumi, J. Catal. 205 (2002) 332–338.

Google Scholar

[16] G. Grigoropoulou, J.H. Clark, J.A. Elings, Green Chem. 5 (2003) 1–7.

Google Scholar

[17] Z. Karimi, A.R. Mahjoub ⇑, S.M. Harati. Inorganica Chimica Acta 376 (2011) 1–9

Google Scholar

[18] I.K. Song, M.S. Kaba, M.A. Barteau, Langmuir 18 (2002) 2358.

Google Scholar

[19] T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113.

Google Scholar

[20] Zhao D Y, Feng J L, Huo Q S, et al. [J].Science, 279 (1998) 548-552.

Google Scholar

[21] P. Staiti, S. Freni, S. Hocevar, J. Power Sources 79 (1999) 250.

Google Scholar