[1]
L. M. Pecora, T. L. Carroll. Synchronization in chaotic systems, Phys Rev Lett, vol. 64, p.821–824, (1990).
DOI: 10.1103/physrevlett.64.821
Google Scholar
[2]
E. Ott, C. Grebogi, J. A. Yorke. Controlling chaos, Phys Rev Lett , vol. 64, p.1196–1199, (1990).
DOI: 10.1103/physrevlett.64.1196
Google Scholar
[3]
J. H. Park, O. M. Kwon. A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons & Fractals, vol. 23, p.495–501, (2005).
DOI: 10.1016/j.chaos.2004.05.023
Google Scholar
[4]
F. WANG, C. LIU. A new criterion for chaos and hyperchaos synchronization using linear feedback control , Physics Letters A, vol. 360, pp.274-278, (2006).
DOI: 10.1016/j.physleta.2006.08.037
Google Scholar
[5]
A. E. Matouk. Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit, Communications in Nonlinear Science and Numerical Simulation, vol. 16, pp.975-986, (2011).
DOI: 10.1016/j.cnsns.2010.04.027
Google Scholar
[6]
X. Wu, J. Lu. Parameter identification and backstepping control of uncertain Lu¨ system, Chaos, Solitons & Fractals, vol. 18, p.721–729, (2003).
DOI: 10.1016/s0960-0779(02)00659-8
Google Scholar
[7]
A. Khadra, X. Liu, X. Shen. Application of impulsive synchronization to communication security, IEEE Trans. On Circuits and Systems, vol. 50, pp.341-350, (2003).
DOI: 10.1109/tcsi.2003.808839
Google Scholar
[8]
H. T. Yau. Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control, Mechanical Systems and Signal Processing, vol. 22, pp.408-418, (2008).
DOI: 10.1016/j.ymssp.2007.08.007
Google Scholar
[9]
J. Lu, X. Wu, X. Han, Adaptive feedback synchronization of a unified chaotic system, Phys Lett A vol. 329, p.327–333, (2004).
DOI: 10.1016/j.physleta.2004.07.024
Google Scholar
[10]
J. H. Park, Adaptive synchronization of a unified chaotic systems with an uncertain parameter, Int J Nonlin Sci Numer Simulat, vol. 6, p.201–206, (2005).
Google Scholar
[11]
Y. W. Wang, Z. H. Guan, Generalized synchronization of continuous chaotic systems, Chaos, Solitons & Fractals, vol. 27, p.97–101, (2006).
DOI: 10.1016/j.chaos.2004.12.038
Google Scholar
[12]
G.H. Li. Modified projective synchronization of chaotic system, Chaos, Solitons & Fractals, vol. 32, pp.1786-1790, (2007).
DOI: 10.1016/j.chaos.2005.12.009
Google Scholar
[13]
J. H. Park. Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos, Solitons & Fractals, vol. 34, pp.1552-1559, (2007).
DOI: 10.1016/j.chaos.2006.04.047
Google Scholar
[14]
J. H. Park. Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, Journal of Computational and Applied Mathematics, vol. 213, pp.288-293, (2008).
DOI: 10.1016/j.cam.2006.12.003
Google Scholar