Adaptive Modified Projective Synchronization Between Genesio and Rossler Chaotic Systems with Uncertainties

Article Preview

Abstract:

The paper discusses the modified projective synchronization of two different chaotic systems by nonlinear control laws, considering the conditions of the master-slave systems with uncertain parameters, the synchronization problem between Genesio system and Rossler system has been investigated, adopting the adaptive control method, a sufficient condition is attainted for the modified projective synchronization between master and slave system, finally, The control performances are verified by the numerical examples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

1040-1044

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. M. Pecora, T. L. Carroll. Synchronization in chaotic systems, Phys Rev Lett, vol. 64, p.821–824, (1990).

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] E. Ott, C. Grebogi, J. A. Yorke. Controlling chaos, Phys Rev Lett , vol. 64, p.1196–1199, (1990).

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[3] J. H. Park, O. M. Kwon. A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons & Fractals, vol. 23, p.495–501, (2005).

DOI: 10.1016/j.chaos.2004.05.023

Google Scholar

[4] F. WANG, C. LIU. A new criterion for chaos and hyperchaos synchronization using linear feedback control , Physics Letters A, vol. 360, pp.274-278, (2006).

DOI: 10.1016/j.physleta.2006.08.037

Google Scholar

[5] A. E. Matouk. Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit, Communications in Nonlinear Science and Numerical Simulation, vol. 16, pp.975-986, (2011).

DOI: 10.1016/j.cnsns.2010.04.027

Google Scholar

[6] X. Wu, J. Lu. Parameter identification and backstepping control of uncertain Lu¨ system, Chaos, Solitons & Fractals, vol. 18, p.721–729, (2003).

DOI: 10.1016/s0960-0779(02)00659-8

Google Scholar

[7] A. Khadra, X. Liu, X. Shen. Application of impulsive synchronization to communication security, IEEE Trans. On Circuits and Systems, vol. 50, pp.341-350, (2003).

DOI: 10.1109/tcsi.2003.808839

Google Scholar

[8] H. T. Yau. Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control, Mechanical Systems and Signal Processing, vol. 22, pp.408-418, (2008).

DOI: 10.1016/j.ymssp.2007.08.007

Google Scholar

[9] J. Lu, X. Wu, X. Han, Adaptive feedback synchronization of a unified chaotic system, Phys Lett A vol. 329, p.327–333, (2004).

DOI: 10.1016/j.physleta.2004.07.024

Google Scholar

[10] J. H. Park, Adaptive synchronization of a unified chaotic systems with an uncertain parameter, Int J Nonlin Sci Numer Simulat, vol. 6, p.201–206, (2005).

Google Scholar

[11] Y. W. Wang, Z. H. Guan, Generalized synchronization of continuous chaotic systems, Chaos, Solitons & Fractals, vol. 27, p.97–101, (2006).

DOI: 10.1016/j.chaos.2004.12.038

Google Scholar

[12] G.H. Li. Modified projective synchronization of chaotic system, Chaos, Solitons & Fractals, vol. 32, pp.1786-1790, (2007).

DOI: 10.1016/j.chaos.2005.12.009

Google Scholar

[13] J. H. Park. Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos, Solitons & Fractals, vol. 34, pp.1552-1559, (2007).

DOI: 10.1016/j.chaos.2006.04.047

Google Scholar

[14] J. H. Park. Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, Journal of Computational and Applied Mathematics, vol. 213, pp.288-293, (2008).

DOI: 10.1016/j.cam.2006.12.003

Google Scholar