Microstructure and Electrical Properties of Vanadium doped Bi4Ti3O12 Layer-Stuctured Ferroelectric Ceramics

Article Preview

Abstract:

A series of ferroelectric BIT ceramics with various V2O5 dopants were prepared by conventional solid-state route. The influence of V2O5 dopant on microstructural and electrical properties of BIT ceramic were investigated in detail, which were examined by XRD, Raman spectra and P-E hysteresis loops, etc. X-ray Photoelectron Spectroscopy was used to examine the chemical state of the vanadium ions inside the BIT ceramics. Vanadium added to the BIT system can enhance the ferroelectric property due to the decrease of the concentration of space charge occurred during calcinations and weaken the polarization property due to the decrease of grain size and the change of chemical valence for vanadium ion. The BIT ceramic with 3 mol% V2O5 dopant exhibits a remnant polarization 2Pr of 25.6 μC/cm2, and coercive field Ec of 47.4 KV/cm. Besides, the conductivity of BTV was obviously lower than that of the undoped BIT, which was accord with donor dopants decreasing the conductivity of a material with a p-type mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-340

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.A. Paz de Araujo, J.D. Cuchlaro, L.D. McMillan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes, Nature. 374 (1995), 627-629.

DOI: 10.1038/374627a0

Google Scholar

[2] J.F. Scott, Ferroelectric Memories, Springer Press, Berlin, P. (2000).

Google Scholar

[3] J.S. Kim, C.W. Ahn, H.J. Lee and S.Y. Lee, Retention characteristics of V-doped Bi3. 25La0. 75Ti3O12 thin film, Ceramics International. 30 (2004), 1565-1568.

DOI: 10.1016/j.ceramint.2003.12.099

Google Scholar

[4] J.F. Scott, Device physics of ferroelectric thin-film memories, Jpn. J. Appl. Phys. 38 (1999), 2272-2274.

DOI: 10.1143/jjap.38.2272

Google Scholar

[5] J.F. Scott, C.A. Araujo, Ferroelectric memories, Science. 246 (1989), 1400-1405.

Google Scholar

[6] K. Kato, C. Zheng, J.M. Finder, S.K. Dey, Y. Torii, Sol–Gel Route to Ferroelectric Layer-Structured Perovskite SrBi2Ta2O9 and SrBi2Nb2O9 thin Films, .J. Am. Ceram. Soc. 81 (1998), 1869-1875.

DOI: 10.1111/j.1151-2916.1998.tb02559.x

Google Scholar

[7] P.H. Park, B.B. Kang, S.D. Bu, T.W. Noh, J. Lee, and W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories, Nature. 401 (1995), 682-684.

DOI: 10.1038/44352

Google Scholar

[8] A. Garg, Z.H. Barber, M. Dawber, J.F. Scott, et al.; Orientation dependence of ferroelectric properties of pulsed-laser-ablated Bi4-xNdxTi3O12 films, Appl. Phys. Lett. 83(2003) 2414-2416.

DOI: 10.1063/1.1613052

Google Scholar

[9] A. Garg, A. Snedden, P. Lightfoot, et al., Investigation of structural and ferroelectric properties of pulsed-laser-ablated epitaxial Nd-doped bismuth titanate films; J. Appl. Phys 96(2004) 3408-3412.

DOI: 10.1063/1.1766097

Google Scholar

[10] U. Chon, J.S. Shim and H.M. Jang, Ferroelectric properties and crystal structure of praseodymium-modified bismuth titanate, J. Appl. Phys. 93 (2003), 4769-4775.

DOI: 10.1063/1.1561585

Google Scholar

[11] K.T. Kim, C.I. Kim, D.H. Kang, and I.W. Shim, The effect of Eu substitution on the ferroelectric properties of Bi 4Ti3O12 thin films prepared by metal–organic decomposition, Thin Solid Films, 422 (2002), 230-234.

DOI: 10.1016/s0040-6090(02)00981-1

Google Scholar

[12] X.S. Wang and H. Ishiwara, Polarization enhancement and coercive field reduction in W- and Mo-doped Bi3. 35La0. 75Ti3O12 thin films, Appl. Phys. Lett. 82 (2003), 2479-2481.

DOI: 10.1063/1.1566087

Google Scholar

[13] S. Kojima, R. Imaizumi, S. Hamazake, M. Takashige, Jpn. J. Appl. Phys., Part 1. 33 (1994) 5559-5562.

Google Scholar

[14] H. Idink, V. Srikanth, W.B. White, E.C. Subbarao, Raman study of low temperature phase transitions in bismuth titanate, Bi4Ti3O12, J. Appl. Phys. 76 (1994), 1819-1823.

DOI: 10.1063/1.357700

Google Scholar

[15] N. Sugita, E. Tokuitsu, M. Osada, M. Kakihana, Jpn. J. Appl. Phys. Part 2. 42 (2003) L944-L947.

Google Scholar

[16] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi and Z. Hiroi, App. Pyhs. Lett. 79 (2001) 2701-2703.

Google Scholar

[17] L. Baudry, Theoretical investigation of the influence of space charges on ferroelectric properties of PbZrTiO3 thin film capacitor, J. Appl. Phys. 86 (1999), 1096-1105.

DOI: 10.1063/1.371147

Google Scholar

[18] X.S. Wang, h. Ishiwara, Polarization enhancement and coercive field reduction in W- and Mo-doped Bi3. 35La0. 75Ti3O12 thin films, Appl. Phys. Lett. 82 (2002) 2479-2481.

DOI: 10.1063/1.1566087

Google Scholar

[19] R.D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32 (1976) 751.

DOI: 10.1107/s0567739476001551

Google Scholar