Analysis and Optimization of Sensitivity of a MEMS Peizoresistive Pressure Sensor

Article Preview

Abstract:

This paper presents a MEMS Piezoresistive pressure sensor which utilizes a circular shaped polysilicon diaphragm with a nanowire to enhance the sensitivity of the pressure sensor. The polysilicon nanowire is fabricated in such a way that it forms a bridge between the circular polysilicon diaphragm and the substrate. The high Piezoresistive effect of Silicon nanowires is used to enhance the sensitivity. A circular polysilicon nanowire piezoresistor was fabricated by means of reactive ion etching. This paper describes the performance analysis, structural design and fabrication of piezoresistive pressure sensor using simulation technique. The polysilicon nanowire pressure sensor has a circular diaphragm of 500nm radius and has a thickness about 10nm. Finite element method (FEM) is adopted to optimize the sensor output and to improve the sensitivity of the circular shaped diaphragm of a polysilicon nanowire Piezoresistive pressure sensor. The best position to place the Polysilicon nanowires to receive maximum stress was also considered during the design process..The fabricated polysilicon nanowire has high sensitivity of about 133 mV/VKPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

652-656

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. H. Zhang, C. Yang, Z. H. Zhang, H. W. Lin, L. T. Liu and T. L. Ren: A Novel Pressure Microsensor With 30-µm-Thick Diaphragm and Meander-Shaped Piezoresistors Partially Distributed on High-Stress bulk Silicon Region, J. Micromech. Susc., vol. 14 (2005).

DOI: 10.1109/jsen.2007.910298

Google Scholar

[2] M. X. Zhou, Q. A. Huang, M. Qin and W. Zhou: A novel capacitive pressure sensor based on sandwich structures, Journal of microelectromechanical systems, vol. 14 (2005), pp.1272-1282.

DOI: 10.1109/jmems.2005.859100

Google Scholar

[3] J. Jordana and R. Pall'as-Areny: A simple, efficient interface circuit for piezoresistive pressure sensors, " Sens. Actuators A, vol. 127 (2006), p.69–73.

DOI: 10.1016/j.sna.2005.11.013

Google Scholar

[4] L. Lin, H. Chu, and Y. Lu: A simulation program for the sensitivity and linearity of piezoresistive pressure sensors, IEEE J. Microelectromech. Syst., vol. 8 (1999), p.514–522.

DOI: 10.1109/84.809067

Google Scholar

[5] Z. Dibi, A. Boukabache, and P. Pons: Effect of the silicon membrane flatness defect on the piezoresistive pressure sensor response, in Proc. IEEE Conf. Electron., Circuits, Syst. (ICECS'00), Jounieh, Lebanon, Dec. 17–20 (2000), p.853–856.

DOI: 10.1109/icecs.2000.913010

Google Scholar

[6] J. H. Kim, K. T. Park, H. C. Kim, and K. Chun : Fabrication Of A Piezoresistive Pressure Sensor For Enhancing Sensitivity Using Silicon Nanowire, Transducers 2009, Denver, CO, USA, June 21-25, (2009).

DOI: 10.1109/sensor.2009.5285668

Google Scholar

[7] S. Maflin Shaby and A. Vimala Juliet: Single Polysilicon Nano-Wire Piezoresistors for MEMS Pressure Sensor, Journal of ciit vol 3 (2011), pp.497-501.

DOI: 10.1109/raics.2011.6069399

Google Scholar

[8] S. C. Gong: Effects of pressure sensor dimensions on process window of membrane thickness, Sens. Actuators A, vol. 112 (2004), p.286–290.

DOI: 10.1016/j.sna.2004.02.001

Google Scholar

[9] S. Vlassis, T. Laopoulos, and S. Siskos: Pressure sensors interfacing circuit with digital output, " Proc. Inst. Elect. Eng. Circuits Devices Syst., vol. 145(1998) p.332–336.

DOI: 10.1049/ip-cds:19982270

Google Scholar

[10] R. He and P. Yang: Giant Piezoresistance Effect in Silicon Nanowires, Nature nanotechnology, vol. 1 (2006) , pp.42-46.

DOI: 10.1038/nnano.2006.53

Google Scholar

[11] H. Jensenius, J. Thaysen, A. A. Rasmussen, L. H. Veje, O. Hansen and A. Boisen: A microcantilever-based alcohol vapor sensor-application and response model , Applied Physics Letters, vol. 76 (2000), pp.2615-2617.

DOI: 10.1063/1.126426

Google Scholar

[12] Min-Xin Zhou, Qing-An Huang, Senior Member, IEEE, Ming Qin, and Wei Zhou : A Novel Capacitive Pressure Sensor Based on Sandwich Structures, Journal of microelectromechanical systems, vol. 14 (2005), pp.1272-1282.

DOI: 10.1109/jmems.2005.859100

Google Scholar

[13] K. Reck, J. Richter, O. Hansen and E.V. Thomsen Technical University of Denmark and Kgs. Lyngby, Denmark: Piezoresistive effect in top-down fabricated Silicon nanowires, Proc. MEMS (2008).

DOI: 10.1109/memsys.2008.4443757

Google Scholar

[14] N. Mingo: Calculation of Si Nanowire Thermal Conductivity using Complete Phonon Dispersion Relations, Physical Review B, vol. 68 (2003), p.113308.

DOI: 10.1103/physrevb.68.113308

Google Scholar

[15] C. S. Smith: Piezoresistance Effect in Germanium and Silicon, Physical Review, vol. 94 (1954), pp.42-49.

Google Scholar