Mutagenesis of catA from Pseudomonas sp. B3-1 to Enhance Catechol Accumulation

Article Preview

Abstract:

Pseudomonas sp. B3-1, a wild strain isolated from soil, produced catechol from benzoate and accumulated it outside the cell. catA, a gene encodes a catechol 1,2-dioxygenase in the bioconversion of aromatic compounds, plays the central role in accumulation of catechol. Mutant of the catA gene is disrupted without blocking the transcription of downstream genes was analyzed. The result showed that the mutant had less catechol 1, 2-dioxygenase activity, only 1/3 of strain B3-1’s. The mutant produced a maximal amount of catechol (1.22 mg/ml) from 4 mg/ml of sodium benzoate after growing for 48 h. The conversion rate of benzoate to catechol was 51.5% on a molar basis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

1615-1620

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kodama Noriko, Shuichiro Murakami, Ryu Shinke, and Kenji Aoki.Production of Catechol by Transpositional Mutants of Anline-Assimilating Pseudomonas Species AW-2.Journal of Fermentation and Bioengingeering, 82(5),480-483(1996).

DOI: 10.1016/s0922-338x(97)86987-5

Google Scholar

[2] Hee J.C. and Yong J.Y. Mathematical modeling and simulation of catechol production from benzoate using resting cells of Pseudomonas putida. Process Biochemistry,32(5),423-432(1997).

DOI: 10.1016/s0032-9592(96)00100-8

Google Scholar

[3] Jimenez J.I.,B. Minambres,and J.L. Garcia.Genomic insights in the metabolism of aromatic compounds in Pseudomonas, In J.L. Ramos(ed.),The Pseudomonads. Biosynthesis of macromolecules and molecular metabolism. Kluwer Academic/Plenum Publishers, New York, NY. vol.3 (2004),p.425–462

Google Scholar

[4] Pieper, D.,and W. Reineke.Degradation of chloroaromatics by Pseudomonas, In J. L. Ramos (ed.),The Pseudomonads.Biosynthesis of macromolecules and molecular metabolism. Kluwer Academic/ Plenum Publishers, New York, NY. vol.3(2004),p.509–574

DOI: 10.1007/978-1-4419-9088-4_18

Google Scholar

[5] Katsuhisa Shirai.Catechol Production from Benzene through reaction with Resting and Immobilized Cells of a Mutant Strain of Pseudomonas. Agric.Biol.Chem,51(1),121-128( 1987).

DOI: 10.1271/bbb1961.51.121

Google Scholar

[6] NatarajanM.R.,and Oriel P. Production of Catechol by a Bacillus stearothermophilus Transpositional Mutant.Biotechnol.Prog,8(1),78-80 (1992).

DOI: 10.1021/bp00013a011

Google Scholar

[7] Chuan Lu Wang, Shinji Takenaka, Shuichiro Murakami,and Kenji Aoki. Isolation of a benzoate-utilizing Pseudomonas strain from soil and production of catechol from benezoate by transpositional mutants. Microbial.Res,156(2),151-158(2001).

DOI: 10.1078/0944-5013-00096

Google Scholar

[8] Chuan Lu Wang, Shinji Takenaka, Shuichiro Murakami, and Kenji Aoki. Production of catechol from benezoate by the wild strain ralstonia species ba-0323 and characterization of its catechol 1,2-dioxygenase. Biosci. Biotechnol. Biochem,65(9),1957-1964 (2001).

DOI: 10.1271/bbb.65.1957

Google Scholar

[9] Chuan Lu Wang, Su-LinYou, and San-Lang Wang. Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source.Process Biochemistry,41(7),1594–1601(2006).

DOI: 10.1016/j.procbio.2006.03.008

Google Scholar

[10] Hanahan D. Studies on transformation of Escherichia coli with plasmid. J Mol Biol, 166(4),557-580(1983).

Google Scholar

[11] Sambrook J, and Russell D W. Molecular Cloning: A Laboratory Manual(3rd ed). Cold Spring Harbor Laboratory Press (2001).

Google Scholar

[12] LaRue, T. A.,and Blakley, R. E. Spectrophotometric determination of catechols with 4-aminoantipyrine. Anal. Chim. Acta,31,400-403(1964).

DOI: 10.1016/s0003-2670(00)88845-5

Google Scholar

[13] Tsai S.C.,and Li Y.K.. Purification and characterization of a chatecol 1,2-dioxygenase from a phenol degrading Candida albicans TL3. Arch Microbiol,187(3),199-206(2007).

DOI: 10.1007/s00203-006-0187-4

Google Scholar

[14] Masahiro Takeo, Munehiro Nishimura, Mizuho Shirai, Hana Takahashi,and Seiji Negoro. Purification and Characterization of Catechol 2,3-Dioxygenase from the Aniline Degradation Pathway of Acinetobacter sp. YAA and Its Mutant Enzyme, Which Resists Substrate Inhibition. Biosci.Biotechnol.Biochem,71(7),1668-1675(2007).

DOI: 10.1271/bbb.70079

Google Scholar

[15] Merle Windgassen, Andreas Urban, and Karl-Erich Jaeger. Rapid gene inactivation in pseudomonas aeruginosa. FEMS Microbiology Letters,193,201-205 (2000).

DOI: 10.1111/j.1574-6968.2000.tb09424.x

Google Scholar

[16] Katsuhisa Shirai. Screening of Microorganisms for Catechol Production from Benzene. Agric.Biol.Chem, 50(11),2875-2880 (1986).

DOI: 10.1080/00021369.1986.10867845

Google Scholar

[17] Gurujeyalakshmi G.,and Oriel P. Isolation of a phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl.Environ.Microbiol,55(2),500-502(1989).

DOI: 10.1128/aem.55.2.500-502.1989

Google Scholar

[18] Axcell BC, and Geary PJ. The metabolism of benzene by bacteria. Purification and some properties of the enzyme cis-1,2-dihydroxycyclohexa-3,5-diene (nicotinamide–adenine dinucleotide) oxidoreductase (cis-benzene glycol dehydrogenase).Biochem J,136(4),927–934(1973).

DOI: 10.1042/bj1360927

Google Scholar

[19] Axcell BC, and Geary PJ. Purification and some properties of a soluble benzene-oxidizing system from a strain of Pseudomonas. Biochem J,146(1),173–183(1975).

DOI: 10.1042/bj1460173

Google Scholar

[20] Nelson K. E., Weinel C., and Paulsen I. T. et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol,4 (12),799-808 (2002).

Google Scholar

[21] Kivisaar M, Kasak L, and Nurk A. Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001. Gene,98(1),15-20(1991).

DOI: 10.1016/0378-1119(91)90098-v

Google Scholar

[22] Maia Kivisaar,Rita Ho rak, Lagle Kasaka, Ain Heinarua, and Jaan Habicht. Selection of independent plasmids determining phenol degradation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid,24(1),25-36 (1990).

DOI: 10.1016/0147-619x(90)90022-5

Google Scholar

[23] Harayama, S., Rekik, M., Bairoch, A., Neidle, EL, and Ornston, LN. Potential DNA Sippage Structures Acquired during Evolutionary Divergence of Acinetobacter calcoaceticus Chromosomal benABC and pseudomonas putida TOL pWW0 Plasmid xylXYZ, Genes Encoding Benzoate Dioxygenases. Journal of Bacteriology,173(23),7540-7548(1991).

DOI: 10.1128/jb.173.23.7540-7548.1991

Google Scholar

[24] Alicia Greated, Lotte Lambertsen, Peter A. Williams, and Christopher M. Thomas. Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environmental Microbiology, 4(12),856–871(2002).

DOI: 10.1046/j.1462-2920.2002.00305.x

Google Scholar