[1]
I. I. Koleva, J. P. H. Linssen, T. A. V. Beek, L. N. Evstatieva, V. Kortenska, and N. Handjieva, Antioxidant activity screening of extracts from Sideritis species (Labiatae) grown in Bulgaria, J. Sci. Food Agr. 83 ( 2003) 809–819.
DOI: 10.1002/jsfa.1415
Google Scholar
[2]
M. N. Lund, M. Heinonen, C. P. Baron, and M. Estévez, Protein oxidation in muscle foods: A review, Mol. Nutr. Food Res. 55 (2011) 83-95.
DOI: 10.1002/mnfr.201000453
Google Scholar
[3]
S. R. Kanatt , R. Chander, and A. Sharma, Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat, Food Chem. 100 (2007) 451-458.
DOI: 10.1016/j.foodchem.2005.09.066
Google Scholar
[4]
X. Duan, Y. Jiang, X. Su, Z. Zhang, and J. Shi, Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning, Food Chem. 101 (2007) 1365-1371.
DOI: 10.1016/j.foodchem.2005.06.057
Google Scholar
[5]
Y. Q. Luo, H. X. Shen, D. D. Pan, and G. H. Bu, Gel properties of surimi from silver carp (Hypophthalmichthys molitrix) as affected by heat treatment and soy protein isolate, Food Hydrocolloid. 22 (2008) 1513-1519.
DOI: 10.1016/j.foodhyd.2007.10.003
Google Scholar
[6]
J. W. Park, and T. M. Lin, Surimi: Manufacturing and evaluation, In J. W. Park (Ed.), Surimi and surimi seafood (pp.33-106), 2005. Boca Raton: CRC Press Taylor and Francis Group.
DOI: 10.1201/9781420028041.ch2
Google Scholar
[7]
T. Aymerich, P. A. Picouet, and J. M. Monfort, Decontamination technologies for meat products, Meat Sci. 78 (2008) 114-129.
DOI: 10.1016/j.meatsci.2007.07.007
Google Scholar
[8]
B. H. Kong, J. Z. Wang, and Y. L. Xiong, Antimicrobial activity of several herb and spice extracts in culture medium and in vacuum-packaged pork, J. Food Protect. 70 (2007) 641–647.
DOI: 10.4315/0362-028x-70.3.641
Google Scholar
[9]
B. H. Kong, H. Y. zhang, and Y. L. Xiong, Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action, Meat Sci. 85 (2010) 772-778.
DOI: 10.1016/j.meatsci.2010.04.003
Google Scholar
[10]
R. O. Sinnhuber, and T. C. Yu, The 2-thiobarbituric acid reaction, an objective measure of the oxidative deterioration occurring in fats and oils, J. Jpn. Oil Chem. Soc. 25 (1977) 259-267.
DOI: 10.5650/jos1956.26.259
Google Scholar
[11]
X. F. Xia, B. H. Kong, Q. Liu, and J. Liu, Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze–thaw cycles, Meat Sci. 83 (2009) 239-245.
DOI: 10.1016/j.meatsci.2009.05.003
Google Scholar
[12]
G. L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77.
Google Scholar
[13]
J. A. Wells, M. M. Werber, and R. G.Yount, Inactivation of myosin subfragment one by cobalt(II)/cobalt(III) phenanthroline complexes 2. Cobalt chelation of two critical SH groups, Biochem. 18 (1979) 4800-4805.
DOI: 10.1021/bi00589a006
Google Scholar
[14]
C. Faustman, , Q. Sun , R. Mancini, and S. P. Suman, Myoglobin and lipid oxidation interactions: Mechanistic bases and control, Meat Sci. 86 (2010) 86-94.
DOI: 10.1016/j.meatsci.2010.04.025
Google Scholar
[15]
M. N. Lund , M. Heinonen, C. P. Baron, and M. Estévez, Protein oxidation in muscle foods: A review, Mol. Nutr. Food Res. 55 (2011) 83-95.
DOI: 10.1002/mnfr.201000453
Google Scholar
[16]
M. Soszyński, and G. Bartosz, Decrease in accessible thiols as an index of oxidative damage to membrane proteins, Free Radical. Bio. Med. 23 (1997) 463-469.
DOI: 10.1016/s0891-5849(97)00117-2
Google Scholar
[17]
L. H. Yu, E. S. Lee, and J. Y. Jong, Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles, Meat Sci. 71 (2005) 375-382.
DOI: 10.1016/j.meatsci.2005.04.020
Google Scholar