Effect of Annealing Temperature on the Transformation Temperature and Texture of Ni47Ti44Nb9 Cold-Rolled Plate

Article Preview

Abstract:

Transformation behaviors and texture of Ni47Ti44Nb9 cold-rolled plates were studied by differential scanning calorimetry and X-ray diffraction test. R phase transformation does not occur in Ni47Ti44Nb9 cold-rolled plate annealed at 350°C-750°C followed by quenching into the water. Martensite transformation temperature first increases and then decreases with increment of annealing temperature, and the maximum achieves at 700°C. The heat of reverse martensite transformation increases, while hardness decreases as annealing temperature increases. The major texture of cold-rolled plate is {332} and spread from {332} to {110}. When the annealing temperature is above 600°C, the major textures are {332} and {111} recrystallization texture in secondary cold-rolled plate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

1281-1287

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zuyao Xu, Bohong Jiang, Dazhi Yang, LianchengZhao, Jinfang Guo, Daocheng Pan, Chaoying Xie, Wei Cai, Xunqi Zhang and Yue Huang: Shape Memory Materials (Shang Hai Jiao Tong University Press, Shanghai 2000), p.85 (in Chinese)

Google Scholar

[2] J.V. Humbeeck: Mater. Sci. Eng. A Vol. A273-275 (1999), p.134

Google Scholar

[3] T. Duerig, A. Pelton and D. StÖckel: Mater. Sci. Eng. A Vol. A273–275 (1999), p.149

Google Scholar

[4] Zhirong He, Jingen Zhou and S. Miyazaki: Acta Metall Sin Vol. 39(6) (2003), p.617 (in Chinese)

Google Scholar

[5] Zhirong He, Fang Wang, and Jingen Zhou: Heat Treat. Met. Vol. 31(9) (2006), p.17 (in Chinese)

Google Scholar

[6] X.Huang, and Y. Liu: Scripta Mater. Vol. 45 (2001), p.153

Google Scholar

[7] Limin Huai, Lishan Cui, Laibin Zhang, and Yanjun Zheng: Pet. Sci. Vol. 1(3) (2004), p.62

Google Scholar

[8] Qi Wang, Zhirong He, Manqian Liu, Jun Yang, and Yan Liu: Rare Met Mater Eng Vol. 40(3) (2011), p.0395

Google Scholar

[9] Simpson, A. John, Melton, Keith, Duerig, and Tom, U.S. Patent 4,631,094. (1986)

Google Scholar

[10] Guanjun Yang, and Ju Deng: Rare Met Mater Eng Vol. 27(6) (1998), p.322 (in Chinese)

Google Scholar

[11] Huachu Li, Baodong Gao, Jiangbo Wang, Zhaowei Feng, and Xujun Mi: Rare Metals Vol. 28(4) (2004), p.794 (in Chinese)

Google Scholar

[12] Yufeng Zheng, Wei Cai, Yongqian Wang, Yichun Luo, and Liancheng Zhao: J. Mater. Sci. Technol. Vol. 14 (1998), p.37

Google Scholar

[13] K. Uchida, N. Shigenaka, T.Sakuma, Y. Sutou, and K.Yamauchi: Mater. Trans. Vol. 48(3) (2007), p.445

Google Scholar

[14] H. Inoue, N. Miwa, and N. Inakazu: Acta Mater. Vol. 44 (1996), p.4825

Google Scholar

[15] S. Miyazaki, V. H. No, K. Kitamura, A. Khantachawana, and H. Hosoda: Int. J. Plast. Vol. 16 (2000), p.1135

Google Scholar

[16] D. Y. Li, X. F. Wu, and T. Ko: Acta Metall. Mater. Vol. 38 (1990), p.19

Google Scholar

[17] Ying Yan, Wei Jin, and Mingzhou Cao: Acta Metall Sin Vol. 44(2) (2008), p.139 (in Chinese)

Google Scholar

[18] Ying Yan, and Wei Jin: Chinese Journal of Rare Metals Vol. 32(4) (2008), p.404 (in Chinese)

Google Scholar

[19] Guanjun Yang, Liying Xie, Wenying Hu, Ju Deng, and Shiming Hao: Rare Met Mater Eng Vol. 23(3) (1994), p.13 (in Chinese)

Google Scholar

[20] Gunjun Yang, Liying Xie, Wenying Hu, Ju Deng, and Shiming Hao: Trans Nonferrous Met Soc China Vol. 5(1) (1995), p.88

Google Scholar

[21] S. Miyazaki, and K. Otsuka: Metall. Trans. A Vol. 17A (1986), p.53

Google Scholar

[22] H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao: Acta Metall. Mater. Vol. 39 (1991), p. (2069)

Google Scholar

[23] H.C. Lin, and S. K. Wu: Metall. Trans. A Vol. 4A (1993), p.293

Google Scholar

[24] R. K. Ray, J. J. Jonas, and R. E. Hook: Int. Mater. Rev. Vol. 39 (1994), p.129

Google Scholar

[25] Y. Nagataki, and Y. Hosoya: ISIJ Int. Vol. 36 (1996), p.451

Google Scholar