[1]
Ching-Yuan Bai, Yi-Jun Luo and Chun-Hao Koo. Improvement of high temperature oxidation and corrosion resistance of superalloy IN-738LC by pack cementation [J]. Surface and Coatings Technology, 2004, 183(1): 74-88
DOI: 10.1016/j.surfcoat.2003.10.011
Google Scholar
[2]
Li M J, Sun X F., Guan H R., et al. Cyclic oxidation behavior of palladium-modified aluminide coating[J]. Surface and Coatings Technology, 2003, 167(1): 106-111
DOI: 10.1016/s0257-8972(02)00865-4
Google Scholar
[3]
BRUMM M W and GRABKE H J. Oxidation behaviour of NiAl-Ⅱ: Cavity formation beneath the oxide scale on NiAl of different stoichiometries [J]. Corrosion Science, 1993, 34: 547-561.
DOI: 10.1016/0010-938x(93)90271-h
Google Scholar
[4]
P.Y. Hou, K. Priimak, Interfacial segregation, pore formation, and scale adhesion on NiAl alloys, Oxid. Met. 63 (2005) 113-130.
DOI: 10.1007/s11085-005-1954-3
Google Scholar
[5]
P.Y. Hou, V.K. Tolpygo, Examination of the platinum effect on the oxidation behavior of nickel-aluminide coatings, Surf. Coat. Technol. 202 (2007) 623-627.
DOI: 10.1016/j.surfcoat.2007.06.013
Google Scholar
[6]
RAHMEL A and SCHUTZE M. Mechanical aspects of the rare-earth effec [J]. Oxid Met, 1992, 38: 255-266.
DOI: 10.1007/bf00666914
Google Scholar
[7]
JUNG H G and KIM KY. Effect of yttrium coating on the oxidation behavior of Ni3Al [J]. Oxid Met, 1996, 46: 147-167.
DOI: 10.1007/bf01046888
Google Scholar
[8]
PINT B A. The oxidation behavior of oxide-dispersed β-NiAl: I. short-term performance at 1200°C [J]. Oxid Met, 1998, 49: 531-559.
Google Scholar
[9]
XU C, PENG X, WANG F. Cyclic oxidation of an ultrafine-grained and CeO2-dispersed d-Ni2Al3 coating [J]. Corrosion Science, 2010, 52: 740-747.
DOI: 10.1016/j.corsci.2009.10.034
Google Scholar
[10]
LEES D G. On the reasons for the effects of dispersions of stable oxides and additions of reactive elements on the adhesion and growth-mechanisms of chromia and alumina scales-the "sulfur effect" [J]. Oxid Met, 1987, 27: 75-81.
DOI: 10.1007/bf00656731
Google Scholar
[11]
PFEIL L B. Improvement in heat-resisting alloys [P]. 1937, UK Patent, No. 459848.
Google Scholar
[12]
PENG X, Li T and PAN W P. Oxidation of a La2O3-mofified aluminide coating[J]. Scripta Materialia, 2001, 44: 1033-1038
DOI: 10.1016/s1359-6462(01)00666-2
Google Scholar
[13]
ZHU L, PENG X, YAN J and WANG F., Oxidation of a novel chromium coating with CeO2 dispersions [J]. Oxid Met, 2004, 62: 411-426.
DOI: 10.1007/s11085-004-0921-8
Google Scholar
[14]
SUSAN D F and MARDER A R. Oxidation of Ni-Al-based electrodeposited composite coatings Ⅱ: Oxidation kinetics and morphology at 1000℃ [J]. Oxid Met, 2002, 57: 159-180.
Google Scholar
[15]
LIU H F and CHEN W X. Cyclic oxidation behaviour of electrodeposited Ni3Al-CeO2 base coatings at 1050℃[J]. Corrosion Science, 2007, 49: 3453-3478.
DOI: 10.1016/j.corsci.2007.05.002
Google Scholar
[16]
Zhou Y B, Chen H, Zhang H, Wang Y. Preparation and Oxidation of an Y2O3-dispersed chromizing coating by pack-cementation at 800oC, Vacuum, 2008, 82(8):748-753
DOI: 10.1016/j.vacuum.2007.10.010
Google Scholar
[17]
Zhang Jingchong, Zhou Yuebo. Development and oxidation of RexOy-modified aluminide coating,Advanced Materials Research,2011,Vol. 142:274-278
DOI: 10.4028/www.scientific.net/amr.142.274
Google Scholar
[18]
Y. B. Zhou, B. Y. Qian, H. J. Zhang, Al particles size effect on the microstructure of the co-deposited Ni-Al composite coatings,Thin Solid Films, 2009,517(11):3287-3291
DOI: 10.1016/j.tsf.2009.01.019
Google Scholar
[19]
HANCOCK P and NICHOLLS J R. Application of fracture mechanics to failure of surface oxide scales [J]. Mater Sci Technol, 1988, 4: 398-406.
Google Scholar
[20]
HINDAM H M, WHITTLE D P. Peg formation by short-circuit diffusion in Al2O3 scales containing oxide dispersions [J]. J Electrochem Soc, 1982, 129: 1147−1149.
DOI: 10.1149/1.2124044
Google Scholar
[21]
COTELL C M, YUERK G J, HUSSEY R J, MITCHELL D F, GRAHAM M J. The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal [J]. Oxid Met, 1990, 34: 173−200.
DOI: 10.1007/bf00665014
Google Scholar
[22]
Wang F H, Lou H Y, Zhu S L and Wu W T. The mechanism of scale adhesion on sputtered microcrystalline CoCrAl film. Oxid Met., 1996, 45: 39-50
DOI: 10.1007/bf01046819
Google Scholar
[23]
PINT B A. Experimental observations in support of the dynamic segregation theory to explain the reactive-element effect [J]. Oxid Met, 1996, 45: 1-37.
DOI: 10.1007/bf01046818
Google Scholar
[24]
GRABKE H J. Oxidation of NiAl and FeA [J]. Intermetallics, 1999, 7: 1153-1158.
Google Scholar