An Algorithm of Iterative Learning Control Based on Vector Plots Analysis and its Robustness

Article Preview

Abstract:

Abstract: In order to solve the problem of slow convergence, an iterative learning control algorithm based on vector plots analysis is proposed. By introducing the geometric principle, that angle and side length of corresponding relationship in the same triangle, and transforming output’s error relationship into the relationship of the angel, the P-type is rewarded or penalized. The new algorithm with angle-correction speeds up significantly the convergence process. For illustration, a numerical simulation is utilized to show its efficiency and superiority. Empirical results show that the new algorithm is faster than P-type to make the system convergence .The method modifying P-type by angle is entirely feasible. The system’s output converges to the desired trajectory. The new algorithm can effectively solve the slow convergence problem. Introduction

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

2065-2069

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Arimoto., S. Kawamura, and F. Miyazaki."Bettering operation of robotics by learning," .Journal of Robotic System, Vol. 1, No.2 pp.123-140, Feb. 1984.

DOI: 10.1002/rob.4620010203

Google Scholar

[2] ARIMOTO S. learning control theory for robot motion[J]. Int J of Adaptive Control Signal Processing, 1990, 4(4): 543-564.

DOI: 10.1002/acs.4480040610

Google Scholar

[3] Sun Ming-xuan, Huang Bao-jian, Zhang Xue-zhi. PD-Type Iterative Learning Control for a Class of Uncertain Time-Delay Systems with Biased Initial State [J]. Control Theory a& Applications, 1998. 15(6): 853-858.

Google Scholar

[4] PARK K H, BIEN Z, HUANG D H. A study on the robustness of a PID-type iterative learning controller against initial state error [J]. J of System Science, 1999, 30(1): 49-59.

DOI: 10.1080/002077299292669

Google Scholar

[5] Sun Ming-xuan, Huang Bao-jian. Iterative learning control. Beijing: national defence industrial press, 1999.

Google Scholar

[6] HEINZINGER G, FENWICK D, PADEN B, et al. Stability of learning control with disturbances and uncertain initial conditions adaptive filtering theory [J]. IEEE Trans on Automatic Control, 1992, 37(1): 110-114.

DOI: 10.1109/9.109644

Google Scholar

[7] Xie Sheng-li, Tian Sen-ping, Xie Zhen-dong. New Iterative Learning Control Algorithms Based on Vector Plots Analysis [J]. Acta Automatica Sinica, 2004, 30(2): 161-168.

Google Scholar

[8] Xie Sheng-li, Tian Sen-ping, Xie Zhen-dong. Iterative learning control nonlinear algorithms based on vector plots analysis [J]. Control Theory & Applications, 2004, 21(6): 951-955.

Google Scholar

[9] Zhang Jun-hai, Shi Cheng-ying, Lin Hui. Iterative learning control algorithm based on vector plots analysis and its robustness [J], Control Theory & Applications, 2007. 24(1): 155-159.

Google Scholar

[10] Xie Sheng-li, Tian Sen-ping, Xie Zhen-dong. Fast algorithm of learning control based on geometric analysis.[J] Control Theory & Applications, 2003. 20(3): 419-422.

Google Scholar

[11] Xie Sheng-li, Tian Sen-ping, Xie Zhen-dong. Iterative learning control algorithm based on geometric analysis [J]. Control and Decision, 2004,19(9): 1038-1041.

Google Scholar

[12] Zhang Jun-hai, Shi Cheng-ying, Lin Hui. New ILC Algorithm Corrected with Angle Relationship of Output Vectors [J]. Journal of System Simulation, 2006. 18(2): 602-604.

Google Scholar