A Posteriori Error Estimates for a Steklov Eigenvalue Problem

Article Preview

Abstract:

This paper discusses the finite element approximation for a Steklov eigenvalue problem. Based on the work of Armentano and Padra ( Appl Numer Math 58 (2008) 593-601), an a posteriori error estimator is provided and its validity and reliability are proved theoretically. Finally, numerical experiments with Matlab program are carried out to confirm the theoretical analysis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

2081-2086

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bermudez, R. Rodriguez, D. Santamarina: Numer. Math Vol.87(2000),pp.201-227.

Google Scholar

[2] S. Bergamann., M. Schiffer: Kernel Functions and Elliptic Differential Equations in Mathematics Physics( Academic Press, San Diego (1953)).

Google Scholar

[3] C. Conca, J. Planchard, M. Vanninathanm: Fluid and Periodic Structures. Wiley, New York (1995)

Google Scholar

[4] J.H. Bramble, J.E. Osborn: Foundations of the Finite Element Method with Applications to PDE,pp.387-408. (Academic Press, New York (1972)).

Google Scholar

[5] A.B. Andreev, T.D. Todorov: IMA J. Numer. Anal. Vol. 24(2004), pp.309-322.

Google Scholar

[6] Q. Li, Y.D. Yang: J. Appl. Math. Comput. Vol. 36(2011), pp.129-139.

Google Scholar

[7] M.G. Armentano, C. Padra: Appl. Numer. Math. Vol.58 (2008), pp.593-601.

Google Scholar

[8] A.D. Russo, A.E. Alonso: Comput. Math. Appl. Vol.62(2011), pp.4100-4117.

Google Scholar

[9] M. Garau, P. Morin: IMA J. Numer. Anal. Vol.31 (2011), pp.914-946.

Google Scholar

[10] H.d. han: Appl Math Ser A--A Journal of Chinese Universities Vol.9(2)(1994), pp.128-135.

Google Scholar

[11] Y.D. Yang, Qin Li, S.R. Li: Appl. Numer. Math. Vol.59 (2009), pp.2388-2401.

Google Scholar

[12] I. Babuska, J. Osborn: Eigenvalue Problems, in: Finite Element Methods(Part 1), Hand publishers, North-Holland, Amsterdam, pp.641-787.

Google Scholar