A Two-Grid Discretization Scheme for a Sort of Steklov Eigenvalue Problem

Article Preview

Abstract:

On the basis of Yang and Bi’s work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis..

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

2087-2091

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Bergamann, M. Schiffer: Kernel Functions and Elliptic Differential Equations in Mathematics physics.(Academic Press, San Diego 1953.)

Google Scholar

[2] C. Conca, J. Planchard and M. Vanninathanm: Fluid and Periodic Structures.(Wiley, New York 1995)

Google Scholar

[3] A. Bermudez, R. Rodriguez and D. Santamarina: Numer. Math. Vol. 87(2000), pp.201-227.

Google Scholar

[4] J.H. Bramble, J.E. Osborn: Aziz A.K.(ed.) (1972), pp.387-408.

Google Scholar

[5] J. Xu, A. Zhou: Math. Comput. Vol. 70 (2001), pp.17-25.

Google Scholar

[6] Q. Li, Y.D. Yang: J. Appl. Math. Comput. Vol. 36 (2011), pp.129-139.

Google Scholar

[7] H. Bi,Y.D. Yang: Appl. Math. Comput. Vol.217 (2011), pp.9669-9678.

Google Scholar

[8] Y.D. Yang, H. Bi: SIAM J. Numer. Anal.Vol.49 (2011), pp.1602-1624.

Google Scholar

[9] I. Babuska, J. Osborn:Eigenvalue Problems, in :Finite Element Methods(Part 1), Hand publishers, North-Holland,Amsterdam,1991,pp.641-787.

Google Scholar