Two Optimal Double Inequalities for Error Function

Article Preview

Abstract:

Let erf(x) be error function. Inspired by the inequality due to Alzer (2010), this paper obtain two optimal inequalities for the convex combination of error function.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

2092-2095

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Oldham, J. Myland and J. Spanier, in: An atlas of functions.With Equator, the atlas function calculator, Second edition, chapter 10, Springer, New York(2009).

Google Scholar

[2] N. M. Temme, in: NIST handbook of mathematical functions, pp.159-171, U.S. Dept. Commerce, Washington, DC(2010).

Google Scholar

[3] W. Gawronski, J. Muller and M. Reinhard: SIAM J. Numer. Anal., vol. 45(6)(2007), pp.2564-2576.

Google Scholar

[4] S. Morosawa: Complex analysis and potential theory, (2007), pp.174-177.

Google Scholar

[5] H. Alzer: Aequationes Math., vol. 66 (1-2)(2003), pp.119-127.

Google Scholar

[6] B. Fisher, F. Al-Sirehy and M. Telci: Int. J. Appl. Math., vol. 13(4)(2003), pp.317-326.

Google Scholar

[7] B. Fisher, M. Telci and E. ozcag: Rad. Mat., vol. 12 (1)(2003), 81-90.

Google Scholar

[8] S. J. Chapman: Proc. Roy. Soc. London Ser. A, vol. 452 (1996), pp.2225-2230.

Google Scholar

[9] J. A. C. Weideman: SIAM J. Numer. Anal., vol. 31 (5)(1994), pp.1497-1518.

Google Scholar

[10] D. Coman: Studia Univ. Babes-Bolyai Math., vol. 36 (2)(1991), pp.13-16.

Google Scholar

[11] A. Laforgia and S. Sismondi: J. Comput. Appl. Math., vol. 23 (1)(1988), pp.25-33.

Google Scholar

[12] V. L. N. Sarma and H. D. Pandey: Vijnana Parishad Anusandhan Patrika, vol. 25 (4)(1982), pp.307-310.

Google Scholar

[13] H. S. Mukunda:Bull. Calcutta Math. Soc., vol. 66(1974), pp.39-54.

Google Scholar

[14] F. Matta and A. Reichel: Math. Comp., vol. 25(1971), pp.339-344.

Google Scholar

[15] J. P. Vigneron and Ph. Lambin: Math. Comp., vol. 35 (152)(1980), pp.1299-1307.

Google Scholar

[16] O. S. Berljand and A. Ja. Pressman: Dokl. Akad. Nauk SSSR, vol. 140(1961), pp.12-14.

Google Scholar

[17] W. W. Clendenin: Comm. ACM, vol. 4(1961), pp.354-355.

Google Scholar

[18] R. G. Hart: Math. Comp., vol. 20(1966), pp.600-602.

Google Scholar

[19] W. J. Cody: Math. Comp., vol. 23(1969), pp.631-637.

Google Scholar

[20] R. K. Bhaduri and B. K. Jennings: Amer. J. Phys., vol. 44 (6)(1976), pp.590-592.

Google Scholar

[21] I. H. Zimmerman: Amer. J. Phys., vol. 44 (6)(1976), pp.592-593.

Google Scholar

[22] W. Gautschi: SIAM J. Numer. Anal., vol. 7(1970), pp.187-198.

Google Scholar

[23] O. N. Strand: Math. Comp., vol. 19(1965), pp.127-129.

Google Scholar

[24] J. Kestin and L. N. Persen: Z. Angew. Math. Phys., vol. 7(1965), pp.33-40.

Google Scholar

[25] H. E. Salzer: J. Franklin Inst. vol. 260(1955), pp.209-211.

Google Scholar

[26] S. N. Kharin: Differential equations and their applications, vol. 176(1981), pp.51-59.

Google Scholar

[27] M. A. Chaudhry, A. Qadir and S. M. Zubair: Int. J. Appl. Math., vol. 9 (3)(2002), pp.259-278.

Google Scholar

[28] J. T. Chu: Biometrika, vol. 42(1955), pp.263-265.

Google Scholar

[29] D. S.Mitrinovi\'{c}: Amer. Math. Monthly, vol. 75(1968), pp.1129-1130.

Google Scholar

[30] H. Alzer: Aequationes Math., vol. 78(1-2)(2009), pp.113-121.

Google Scholar

[31] P. S. Bullen, D. S. Mitrinovic, and P. M. Vasic, in: eans and their Inequalities, chapter 3, D. Reidel Publishing Co., Dordrecht, 1988.

Google Scholar

[32] H. Alzer: Adv. Comput. Math., vol. 33(3)(2010), pp.349-379.

Google Scholar