[1]
Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A 2003;253(2):337–358.
Google Scholar
[2]
Wildgoose GG., Banks CE. Compton RG. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2006;2(2), 182–193.
DOI: 10.1002/smll.200500324
Google Scholar
[3]
Liu ZQ, Ma J, Cui YH. Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions. carbon 2008;46:890–897.
DOI: 10.1016/j.carbon.2008.02.018
Google Scholar
[4]
Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, et al. Novel Nanocomposite Pt/RuO2×xH2O/Carbon Nanotube Catalysts for Direct Methanol Fuel Cells. Angew Chem Int Ed 2006; 45:5315–5319.
DOI: 10.1002/anie.200601301
Google Scholar
[5]
Girishkumar G, Hall TD, Vinodgopal K, Kamat PV. Single wall carbon nanotube supports for portable direct methanol fuel cells. J Phys Chem B 2006;110(1), 107–114.
DOI: 10.1021/jp054764i
Google Scholar
[6]
Yoon B, Wai CM. Microemulsion-Templated Synthesis of Carbon Nanotube-Supported Pd and Rh Nanoparticles for Catalytic Applications. J Am Chem Soc 2005;127(49):17174–17175.
DOI: 10.1021/ja055530f
Google Scholar
[7]
Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A 2003;253(2): 337–358.
Google Scholar
[8]
Su F, Li X, Lv L, Zhao X. Ordered mesoporous carbon particles covered with carbon nanotubes. Carbon 2006;44:801–803.
DOI: 10.1016/j.carbon.2005.10.056
Google Scholar
[9]
Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K,. Hiura H. Opening carbon nanotubes with oxygen and implica- tions for filling. Nature 1993;362(6420): 522–525.
DOI: 10.1038/362522a0
Google Scholar
[10]
Freitag M, Tsang JC, Bol A, Yuan D, Liu J, Avouris P. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett 2007;7(7):2037–2042.
DOI: 10.1021/nl070900e
Google Scholar
[11]
Baughman RH, Zakhidov AA, de Heer WA. Carbon Nanotubes--the Route Toward Applications. Science 2002;297(5582):787–792.
DOI: 10.1126/science.1060928
Google Scholar
[12]
Tsang C, Freitag M, Perebeinos V, Liu J, Avouris P. Doping and phonon renormalization in carbon nanotubes. Nat Nanotechnol 2007;2:725–730.
DOI: 10.1038/nnano.2007.321
Google Scholar
[13]
Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Pham-Huu C. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl Catal A 2005;288(1-2):203–210.
DOI: 10.1016/j.apcata.2005.04.034
Google Scholar
[14]
Jain D, Wilhelm R. An easy way to produce α-iron filled multiwalled carbon nanotubes. Carbon 2007;45:602–606.
DOI: 10.1016/j.carbon.2006.10.012
Google Scholar
[15]
Chen W, Pan X, Bao X. Effect of Confinement in Carbon Nanotubes on the Activity of Fischer−Tropsch Iron Catalyst. J Am Chem Soc 2007;129(23):7421–7426.
Google Scholar
[16]
Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat mater 2007;6:507–511.
DOI: 10.1038/nmat1916
Google Scholar
[17]
Zhang A, Dong J, Xu Q, Rhee H, Li X. Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catal Today 2004;347:93–95.
DOI: 10.1016/j.cattod.2004.06.122
Google Scholar
[18]
Anatram MP, Datta S, Xue Y. Coupling of carbon nanotubes to metallic contacts. Phys ReV B 2000;61(20):14219–14224.
DOI: 10.1103/physrevb.61.14219
Google Scholar
[19]
Shan B, Cho K. Ab initio study of Schottky barriers at metal-nanotube contacts. Phys ReV B 2004;70:233405–233408.
DOI: 10.1103/physrevb.70.233405
Google Scholar
[20]
Maiti A, Ricca A. Metal–nanotube interactions–binding energies and wetting properties. Chem Phys Lett 2004;395(1-3):7–11.
DOI: 10.1016/j.cplett.2004.07.024
Google Scholar
[21]
Zhu W, Kaxiras E. The nature of contact between Pd leads and semiconducting carbon nanotubes. Nano Lett 2006;6(7):1415–1418.
DOI: 10.1021/nl0604311
Google Scholar
[22]
Nemec N, Tomanek D, Cuniberti G. Contact dependence of carrier injection in carbon nanotubes: An ab initio study. Phys ReV Lett 2006;96:076802-6.
DOI: 10.1103/physrevlett.96.076802
Google Scholar
[23]
Zhu W, Kaxiras E. Schottky barrier formation at a carbon nanotube—metal junction. Appl Phys Lett 2006;89:243107–243109.
DOI: 10.1063/1.2405393
Google Scholar
[24]
Vincenzo Vitale, Alessandro Curioni, and Wanda Andreoni Metal-Carbon Nanotube Contacts: The Link between Schottky Barrier and Chemical Bonding. J Am Chem Soc 2008;130:5848–5849.
DOI: 10.1021/ja8002843
Google Scholar
[25]
Qin W, Li X, Bian W, Fan X, Qi J. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. 2010;31:1007-1016.
DOI: 10.1016/j.biomaterials.2009.10.013
Google Scholar
[26]
Yao J, Li X, Qin W. Computational design and synthesis of molecular imprinted polymers with high selectivity for removal of aniline from contaminated water. Anal chim Acta 2008;610:282–288 .
DOI: 10.1016/j.aca.2008.01.042
Google Scholar
[27]
Liu R, Li X, Li Y, Jin P, Qin W, Qi J. Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach Biosensors and Bioelectronics Biosens Bioelectron. 2009 (www.elsevier.com/locate/bios).
DOI: 10.1016/j.bios.2009.01.039
Google Scholar
[28]
Qin W, Li X. A Theoretical Study on the Catalytic Synergetic Effects of Pt/Graphene Nanocomposites, J. Phys. Chem. C 2010;114:19009–19015.
DOI: 10.1021/jp1072523
Google Scholar
[29]
Qin W, Li X. A theoretical study on the catalytic effect of nanoparticle confined in carbon nanotube. Chem. Phys. Lett. 2011;502:96-502.
DOI: 10.1016/j.cplett.2010.12.030
Google Scholar
[30]
Kari P, Mika S. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 2002;48(10):1047–1060.
DOI: 10.1016/s0045-6535(02)00168-6
Google Scholar
[31]
Liu P, Sun Q, Zhu F, Liu K, Jiang KL, Liu L, et al. Measuring the Work Function of Carbon Nanotubes with Thermionic Method. Nano Lett 2008;8(2):647–651.
DOI: 10.1021/nl0730817
Google Scholar
[32]
Inoue S, Matsumura Y. Molecular dynamics simulation of metal coating on single-walled carbon nanotube. Chem Phys Lett 2008;464(4-6):160–165.
DOI: 10.1016/j.cplett.2008.09.014
Google Scholar
[33]
Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 1981;23(10):5048–5079.
DOI: 10.1103/physrevb.23.5048
Google Scholar
[34]
Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 1992;45(23):13244–13249.
DOI: 10.1103/physrevb.45.13244
Google Scholar
[35]
Kresse G, Hafner. Ab initio molecular dynamics for liquid metals. J Phys Rev B 1993;47(1):558–561.
DOI: 10.1103/physrevb.47.558
Google Scholar
[36]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54(16):11169–11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[37]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 1996;6(1):15–50.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[38]
Koffyberg FP, Benko FA. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J Appl Phys 1982;53(2):1173–1177.
DOI: 10.1063/1.330567
Google Scholar
[39]
Baerends EJ, Gritsenko OV. A Quantum Chemical View of Density Functional Theory. J Phys Chem A 1997;101(30):5383–5403.
DOI: 10.1021/jp9703768
Google Scholar
[40]
Bader H, Hoigné J. Determination of Ozone in Water by the Indigo Method. Water Res 1981;15(4):449–456.
DOI: 10.1016/0043-1354(81)90054-3
Google Scholar
[41]
Picozzi S, Santucci S, Lozzi L, Valentini L, Delley B. Ozone adsorption on carbon nanotubes: the role of Stone-Wales defects. J Chem Phys 2004;120(15):7147–7152.
DOI: 10.1063/1.1669381
Google Scholar
[42]
Stashans A, Rivera R. Properties, Dynamics, and Electronic Structure of Condensed Systems and Clusters H-doped PbTiO3: Structure and electronic properties. Int J Quantum Chem 2007; 107(6):1508–1513.
DOI: 10.1002/qua.21273
Google Scholar
[43]
Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental 2003; 46(4):639–669.
DOI: 10.1016/s0926-3373(03)00326-6
Google Scholar