Catalytic Hydroxyl Radical Generation by CuO Confined in Multi-Walled Carbon Nanotubes

Article Preview

Abstract:

A DFT study of the catalytic properties of CuO/CNT and CuO@CNT complexes for the heterogeneous catalytic ozonation has been performed. We illustrated the atomistic details of CuO/CNT and CuO@CNT with a quantitative and qualitative discussion within such an electronic structure characteristics. Ozone was catalytically decomposed into an atomic oxygen species and oxygen molecule on both the surface inner and outer CuO@CNT complex, while ozone can only decompose over CuO on the outer surface of CuO/CNT, with partial electrons transfer from CuO/CNT and CuO@CNT complexes to the adsorbate. Then the atomic oxygen reacted with the water molecule to form two hydroxyl groups on the surface, promoting the reaction chain for the generation of•OH which, in turn, lead to an increase in the catalytic ozonation efficiency. Results show synergetic confinement effect of metal oxide nanoparticles inside CNT could also lead to an acceleration of ozone decomposition and the generation of •OH on the inner and outer surface of carbon-nanotube containing catalytic particles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

448-455

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A 2003;253(2):337–358.

Google Scholar

[2] Wildgoose GG., Banks CE. Compton RG. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2006;2(2), 182–193.

DOI: 10.1002/smll.200500324

Google Scholar

[3] Liu ZQ, Ma J, Cui YH. Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions. carbon 2008;46:890–897.

DOI: 10.1016/j.carbon.2008.02.018

Google Scholar

[4] Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, et al. Novel Nanocomposite Pt/RuO2×xH2O/Carbon Nanotube Catalysts for Direct Methanol Fuel Cells. Angew Chem Int Ed 2006; 45:5315–5319.

DOI: 10.1002/anie.200601301

Google Scholar

[5] Girishkumar G, Hall TD, Vinodgopal K, Kamat PV. Single wall carbon nanotube supports for portable direct methanol fuel cells. J Phys Chem B 2006;110(1), 107–114.

DOI: 10.1021/jp054764i

Google Scholar

[6] Yoon B, Wai CM. Microemulsion-Templated Synthesis of Carbon Nanotube-Supported Pd and Rh Nanoparticles for Catalytic Applications. J Am Chem Soc 2005;127(49):17174–17175.

DOI: 10.1021/ja055530f

Google Scholar

[7] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A 2003;253(2): 337–358.

Google Scholar

[8] Su F, Li X, Lv L, Zhao X. Ordered mesoporous carbon particles covered with carbon nanotubes. Carbon 2006;44:801–803.

DOI: 10.1016/j.carbon.2005.10.056

Google Scholar

[9] Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K,. Hiura H. Opening carbon nanotubes with oxygen and implica- tions for filling. Nature 1993;362(6420): 522–525.

DOI: 10.1038/362522a0

Google Scholar

[10] Freitag M, Tsang JC, Bol A, Yuan D, Liu J, Avouris P. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett 2007;7(7):2037–2042.

DOI: 10.1021/nl070900e

Google Scholar

[11] Baughman RH, Zakhidov AA, de Heer WA. Carbon Nanotubes--the Route Toward Applications. Science 2002;297(5582):787–792.

DOI: 10.1126/science.1060928

Google Scholar

[12] Tsang C, Freitag M, Perebeinos V, Liu J, Avouris P. Doping and phonon renormalization in carbon nanotubes. Nat Nanotechnol 2007;2:725–730.

DOI: 10.1038/nnano.2007.321

Google Scholar

[13] Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Pham-Huu C. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl Catal A 2005;288(1-2):203–210.

DOI: 10.1016/j.apcata.2005.04.034

Google Scholar

[14] Jain D, Wilhelm R. An easy way to produce α-iron filled multiwalled carbon nanotubes. Carbon 2007;45:602–606.

DOI: 10.1016/j.carbon.2006.10.012

Google Scholar

[15] Chen W, Pan X, Bao X. Effect of Confinement in Carbon Nanotubes on the Activity of Fischer−Tropsch Iron Catalyst. J Am Chem Soc 2007;129(23):7421–7426.

Google Scholar

[16] Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat mater 2007;6:507–511.

DOI: 10.1038/nmat1916

Google Scholar

[17] Zhang A, Dong J, Xu Q, Rhee H, Li X. Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catal Today 2004;347:93–95.

DOI: 10.1016/j.cattod.2004.06.122

Google Scholar

[18] Anatram MP, Datta S, Xue Y. Coupling of carbon nanotubes to metallic contacts. Phys ReV B 2000;61(20):14219–14224.

DOI: 10.1103/physrevb.61.14219

Google Scholar

[19] Shan B, Cho K. Ab initio study of Schottky barriers at metal-nanotube contacts. Phys ReV B 2004;70:233405–233408.

DOI: 10.1103/physrevb.70.233405

Google Scholar

[20] Maiti A, Ricca A. Metal–nanotube interactions–binding energies and wetting properties. Chem Phys Lett 2004;395(1-3):7–11.

DOI: 10.1016/j.cplett.2004.07.024

Google Scholar

[21] Zhu W, Kaxiras E. The nature of contact between Pd leads and semiconducting carbon nanotubes. Nano Lett 2006;6(7):1415–1418.

DOI: 10.1021/nl0604311

Google Scholar

[22] Nemec N, Tomanek D, Cuniberti G. Contact dependence of carrier injection in carbon nanotubes: An ab initio study. Phys ReV Lett 2006;96:076802-6.

DOI: 10.1103/physrevlett.96.076802

Google Scholar

[23] Zhu W, Kaxiras E. Schottky barrier formation at a carbon nanotube—metal junction. Appl Phys Lett 2006;89:243107–243109.

DOI: 10.1063/1.2405393

Google Scholar

[24] Vincenzo Vitale, Alessandro Curioni, and Wanda Andreoni Metal-Carbon Nanotube Contacts: The Link between Schottky Barrier and Chemical Bonding. J Am Chem Soc 2008;130:5848–5849.

DOI: 10.1021/ja8002843

Google Scholar

[25] Qin W, Li X, Bian W, Fan X, Qi J. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. 2010;31:1007-1016.

DOI: 10.1016/j.biomaterials.2009.10.013

Google Scholar

[26] Yao J, Li X, Qin W. Computational design and synthesis of molecular imprinted polymers with high selectivity for removal of aniline from contaminated water. Anal chim Acta 2008;610:282–288 .

DOI: 10.1016/j.aca.2008.01.042

Google Scholar

[27] Liu R, Li X, Li Y, Jin P, Qin W, Qi J. Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach Biosensors and Bioelectronics Biosens Bioelectron. 2009 (www.elsevier.com/locate/bios).

DOI: 10.1016/j.bios.2009.01.039

Google Scholar

[28] Qin W, Li X. A Theoretical Study on the Catalytic Synergetic Effects of Pt/Graphene Nanocomposites, J. Phys. Chem. C 2010;114:19009–19015.

DOI: 10.1021/jp1072523

Google Scholar

[29] Qin W, Li X. A theoretical study on the catalytic effect of nanoparticle confined in carbon nanotube. Chem. Phys. Lett. 2011;502:96-502.

DOI: 10.1016/j.cplett.2010.12.030

Google Scholar

[30] Kari P, Mika S. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 2002;48(10):1047–1060.

DOI: 10.1016/s0045-6535(02)00168-6

Google Scholar

[31] Liu P, Sun Q, Zhu F, Liu K, Jiang KL, Liu L, et al. Measuring the Work Function of Carbon Nanotubes with Thermionic Method. Nano Lett 2008;8(2):647–651.

DOI: 10.1021/nl0730817

Google Scholar

[32] Inoue S, Matsumura Y. Molecular dynamics simulation of metal coating on single-walled carbon nanotube. Chem Phys Lett 2008;464(4-6):160–165.

DOI: 10.1016/j.cplett.2008.09.014

Google Scholar

[33] Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 1981;23(10):5048–5079.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[34] Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 1992;45(23):13244–13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[35] Kresse G, Hafner. Ab initio molecular dynamics for liquid metals. J Phys Rev B 1993;47(1):558–561.

DOI: 10.1103/physrevb.47.558

Google Scholar

[36] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54(16):11169–11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[37] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 1996;6(1):15–50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[38] Koffyberg FP, Benko FA. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J Appl Phys 1982;53(2):1173–1177.

DOI: 10.1063/1.330567

Google Scholar

[39] Baerends EJ, Gritsenko OV. A Quantum Chemical View of Density Functional Theory. J Phys Chem A 1997;101(30):5383–5403.

DOI: 10.1021/jp9703768

Google Scholar

[40] Bader H, Hoigné J. Determination of Ozone in Water by the Indigo Method. Water Res 1981;15(4):449–456.

DOI: 10.1016/0043-1354(81)90054-3

Google Scholar

[41] Picozzi S, Santucci S, Lozzi L, Valentini L, Delley B. Ozone adsorption on carbon nanotubes: the role of Stone-Wales defects. J Chem Phys 2004;120(15):7147–7152.

DOI: 10.1063/1.1669381

Google Scholar

[42] Stashans A, Rivera R. Properties, Dynamics, and Electronic Structure of Condensed Systems and Clusters H-doped PbTiO3: Structure and electronic properties. Int J Quantum Chem 2007; 107(6):1508–1513.

DOI: 10.1002/qua.21273

Google Scholar

[43] Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental 2003; 46(4):639–669.

DOI: 10.1016/s0926-3373(03)00326-6

Google Scholar