Wet Chemical Synthesis of Ni-Al Nanoparticles at Ambient Condition

Article Preview

Abstract:

The synthesis of intermetallic Ni-Al nanoparticles by co-reduction approach of several organometallic precursors with sodium naphthelide in non-aqueous solution was studied. The state of the art in nanoparticles synthesisation is the selection of suitable precursors and the adaption of colloid chemistry to non-aqueous media at the room temperature under inert atmosphere. The reduction of an organometallic precursor, nickel (II) acetylacetonate, Ni(Acac)2 as a source of Ni element of the intermetallic, and aluminum trichloride, AlCl3 in tetrahydrofuran (THF) solution gave a black particles. The powder X-ray diffraction spectroscopy (pXRD) result shows an expansion of lattice parameter for FCC-Ni indicating the cooperation of Al atoms in Ni structures. The estimation value of Al concentration using Scherrer’s equation is 10 at%. The particles were investigated in more detail by hard X-ray photoemission spectroscopy (HX-PES). The HX-PES spectrums confirmed that the black particles has binding energy consistent to standard materials of Ni3Al. The absence of organic residues shown by the Fourier-transform infrared, FTIR spectrometer indicates that the as prepared Ni-Al nanoparticles are free from by-products.

You might also be interested in these eBooks

Info:

[1] G. Sauthoff, NiAl, in: Oxidation of Intermetallics, Wiley-VCH, Weinheim, 1997, p.5.

Google Scholar

[2] F. Scheppe, P.R. Sahm, W. Hermann, U. Paul, J. Preuhs, Materials Science and Engineering A, 329-331 (2002) 596-601.

DOI: 10.1016/s0921-5093(01)01587-8

Google Scholar

[3] N.S. Stoloff, C.T. Liu, S.C. Deevi, Intermetallics, 8 (2000) 1313-1320.

Google Scholar

[4] M.W. Brumm, H.J. Grabke, Corrosion Science, 34 (1993) 547-553, 555-561.

Google Scholar

[5] M.W. Brumm, H.J. Grabke, Corrosion Science, 33 (1992) 1677-1690.

Google Scholar

[6] M.W. Brumm, H.J. Grabke, B. Wagemann, Corrosion Science, 36 (1994) 37-53.

Google Scholar

[7] G. Ceballos, Z. Song, J.I. Pascual, H.P. Rust, H. Conrad, M. Bäume, H.-J. Freund, Chemical Physics Letters, 359 (2002) 41-47.

Google Scholar

[8] H. Nakae, H. Fujii, K. Nakajima, A. Goto, Materials Science and Engineering A, 223 (1997) 21-28.

Google Scholar

[9] I. Song, N.N. Thadhani, Metallurgical Transactions A, 23 (1992) 41-48

Google Scholar

[10] Z. Wang, A.L. Fan, W.H. Tian, Y.T. Wang, X.G. Li, Materials letters, 60 (2006) 2227-2231.

Google Scholar

[11] R. Ismail, I.I. Yaacob, Journal of alloys and compounds, 392 (2005) 214-219.

Google Scholar

[12] J. Meng, C. Jia, Q. He, Rare Metals, 26 (2010) 372-376

Google Scholar

[13] M. Cokoja, H. Parala, A. Birkner, O. Shekhah, M.W.E. Van Den Berg, A. Fischer, Chemistry of Materials, 19 (2007) 5721-5733.

DOI: 10.1021/cm071411i

Google Scholar

[14] H. Bönnemann, W. Brijoux, H.-W. Hofstadt, T. Ould-Ely, W. Schmidt, B. Waßmuth, C. Weidenthaler, Angewandte Chemie International Edition, 41 (2002) 599-603.

DOI: 10.1002/1521-3773(20020215)41:4<599::aid-anie599>3.0.co;2-r

Google Scholar

[15] H. Abe, F. Matsumoto, L.R. Alden, S.C. Warren, H.D. Abruña, F.J. DiSalvo, Journal of the American Chemical Society, 130 (2008) 5452-5458.

DOI: 10.1021/ja075061c

Google Scholar

[16] G. Saravanan, H. Abe, Y. Xu, N. Sekido, H. Hirata, S.-i. Matsumoto, H. Yoshikawa, Y. Yamabe-Mitarai, Langmuir, 26 (2010) 11446-11451.

DOI: 10.1021/la100942h

Google Scholar

[17] A.R. Denton, N.W. Ashcroft, Physical Review A, 43 (1991) 3161-3164.

Google Scholar

[18] L.S. Hsu, G.H. Gweon, J.W. Allen, Journal of Physics and Chemistry of Solids, 60 (1999) 1627-1631.

Google Scholar

[19] A. Velon, I. Olefjord, Oxidation of Metals, 56 (2001) 415-424.

DOI: 10.1023/a:1012589315800

Google Scholar

[20] K. Nakamoto, Infrared Spectroscopy of Inorganic and Coordination Compounds, Wiley, New York, 1970.

Google Scholar