Preparation and Characterization of MWCNTs-TiO2: Ce/Fe Photocatalyst

Article Preview

Abstract:

Titanium dioxide (TiO2), which was doped by Ce and Fe, was coated on multi-walled carbon nanotubes (MWCNTs) through a conventional sol-gel method. We use IR to evaluate the possible functional groups and XRD, UV and SEM to characterize the structure and surface morphology of MWCNTs. The results suggest that the TiO2, which composed of nano-scale particles, was well coated on MWCNTs via chemistry bond. The visible light photo catalytic was mentioned of its red shift in UV spectrum. And we suggest that there may be a certain mechanism between TiO2 and MWCNTs during visible light processing that MWCNTs has play an important role in red shift and visible light absorption.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

1021-1026

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ou Y., Lin J.D., Fang S.M., Liao D. W:, Study on the preparation of ultrafine mesoporous TiO2 with controllable crystalline phase and its photocatalytic activities [J]. Catal. Commun. 2007, 8: 936-940.

DOI: 10.1016/j.catcom.2006.08.025

Google Scholar

[2] Xu C., Killmeyer R., Gray M. L., Khan S.U.M., Photocatalic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination [J]. Appl. Catal. B-Environ. 2006, 64: 312-317.

DOI: 10.1016/j.apcatb.2005.11.008

Google Scholar

[3] Luo Y. S., Liu. J. P., Xia X.H., Li X. Q., Fang T., Li S.Q., Ren Q. F., Li J. L., Jia Z. J., Fabrication and characterization of TiO2/short MWNTs with enhanced photocatalic activity [J]. Mater. Lett. 2007, 6 1: 2467-2472.

DOI: 10.1016/j.matlet.2006.09.051

Google Scholar

[4] Heller, I.; Janssens, A. M.; Mannik, J.; Minot, E. D.; Lemay, S. G.; Dekker, C. Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors. Nano Lett. 2008, 8, 591–595.

DOI: 10.1021/nl072996i

Google Scholar

[5] Claussen JC, Franklin AD, ul Haque A, Porterfield DM, Fisher TS. Electrochemical biosensor of nanotube-augmented carbon nanotube networks. ACS Nano. 2009; 3: 37–44.

DOI: 10.1021/nn800682m

Google Scholar

[6] Li J, Zhang F, Wang J, Xu Z, Zeng R Voltammetric determination of In3+ based on the bifunctionality of a multi- walled carbon nanotubes-nafion modified electrode. Anal Sci 25: 653–657.

DOI: 10.2116/analsci.25.653

Google Scholar

[4] G. Li, D. Zhang, J.C. Yu, M.K.H. Leung, Environ. Sci. Technol. 44 2010 4276–4281.

Google Scholar

[7] Molhave, K.; Gudnason, S. B.; Pedersen, A. T.; Hyttel, C.; Horsewell, A.; Boggild, P. Transmission Electron Micro- scopy Study of Individual Carbon Nanotube Breakdown Caused by Joule Heating in Air. Nano Lett. 2006, 6, 1663–1668.

DOI: 10.1021/nl060821n

Google Scholar

[8] Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ. A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 2010, 168: 259–265.

DOI: 10.1007/s00604-010-0288-2

Google Scholar

[9] Un Jeong Kim, Clascidia A. Furtado, Xiaoming Liu, Gugang Chen, and Peter C. Eklund. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. AM. CHEM. SOC. 2005, 127, 15437-15445.

DOI: 10.1021/ja052951o

Google Scholar

[10] Ryzhikov, A. S.; Shatokhin, A. N.; Putilin, F. N.; Rumyantseva, M. N.; Gaskov, A. M.; Labeau, M. Hydrogen Sensitivity of SnO2 Thin Films Doped with Pt by Laser Ablation. Sens. Actuators, B 2005, 107, 387–391.

DOI: 10.1016/j.snb.2004.10.031

Google Scholar

[11] Wildgoose GG, Banks CE, Compton RG. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small. 2006; 2: 182–93.

DOI: 10.1002/smll.200500324

Google Scholar

[12] Zeng J, Wei W, Liu X, Wang Y, Luo G. A simple method to fabricate a Prussian Blue nanoparticles/carbon nanotubes/poly (1, 2-diaminobenzene) based glucose biosensor. Microchim Acta. 2008, 160: 261–267.

DOI: 10.1007/s00604-007-0818-8

Google Scholar

[13] Li J, Kuang D, Feng Y, Zhang F, Liu M Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 2011 172: 379–386.

DOI: 10.1007/s00604-010-0512-0

Google Scholar

[14] H.L. Pang, J. P. Lu, J.H. Chen, C.T. Huang, B. Liu, X.H. Zhang. Preparation of SnO2-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation. Electrochimica Acta. 2009; 3: 2610-2615.

DOI: 10.1016/j.electacta.2008.10.058

Google Scholar

[15] Shibin Yina, Pei Kang Shena, Shuqin Songa, San Ping Jiang. Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells. Electrochimica Acta. 2009; 11: 6954-6958.

DOI: 10.1016/j.electacta.2009.07.009

Google Scholar

[16] Jo WK, Kim JT (2009) Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J Hazard Mater 164: 360–366.

DOI: 10.1016/j.jhazmat.2008.08.033

Google Scholar

[17] Wu CX, Xu JX, Li JX, Dong GF, Guan LH. The effect of the catalyst metals on the thermal-oxidative stability of single-walled carbon nanotubes. Phys E Low Dimens Syst Nanostruct. 2009; 41: 1591–5.

DOI: 10.1016/j.physe.2009.05.003

Google Scholar

[18] Lorencon E, Ferlauto AS, de Oliveira S, et al. Direct production of carbon nanotubes/metal nanoparticles hybrids from a redox reaction between metal ions and reduced carbon nanotubes. ACS Appl Mater Interfaces. 2009; 1: 2104–6.

DOI: 10.1021/am900424m

Google Scholar

[19] Mills A., LeHunte S., An over view of semiconductor photocatalysis [J]. J. Photochem. Photobiol. A-Chem. 1997. 1 08: 1-35.

Google Scholar

[20] Eudes Lorencon. Rodrigo G. Lacerda. Luiz O. Ladeira. Rodrigo R. Resende. Andre ́ S. Ferlauto. Ulf Schuchardt. Rochel M. Lago. Thermal behavior of carbon nanotubes decorated with gold nanoparticles. [J]. Therm. Anal. Calorim. 2011 105: 953-959.

DOI: 10.1007/s10973-011-1565-y

Google Scholar