Improved Flame Retardancy and Mechanical Properties of Composite Material S-NiMgAl-Y/EVA

Article Preview

Abstract:

The stearate surface modified LDHs S-NiMgAl-Y was rapidly synthesized based on the coprecipitation coupled with the microwave hydrothermal treatment. The cone calorimeter data confirmed that composite S-NiMgAl-Y/EVA has the good functions of both the flame retardancy and smoke/toxic gas suppression. The tensile strength of S-NiMgAl-Y/EVA was increased to the maximum value of 25.6 MPa when the addition of 10 wt.% S-NiMgAl-Y to EVA. This value is markedly larger than that of the pristine EVA equaling 20.8 MPa. The composite material developed in the present work greatly contributes to the processing and application of the fire retardant material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

435-438

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Mokhtar, S.N. Basahel and Y.O. Al-Angary: J. Alloys Compd. Vol. 493 (2010), pp.376-384.

Google Scholar

[2] F. Kovanda, E. Jindová, K. Lang, P. Kubát and Z. Sedláková: Appl. Clay Sci. Vol. 48 (2010) , pp.260-270.

DOI: 10.1016/j.clay.2009.11.012

Google Scholar

[3] T. Kameda, Y. Fubasami and T. Yoshioka: J. Colloid Interface Sci. Vol. 362 (2011), pp.497-502.

Google Scholar

[4] J. Wang, D. Li, X. Yu, X. Jing, M. Zhang and Z. Jiang: J. Alloys Compd. Vol. 494 (2010), pp.271-274.

Google Scholar

[5] L. Hu, Y. Yuan and W. Shi: Mater. Res. Bull. Vol. 46 (2011), pp.244-251.

Google Scholar

[6] M. Ardanuy and J.I. Velasco: Appl. Clay Sci. Vol. 51 (2011), pp.341-347.

Google Scholar

[7] C.M. Becker, A.D. Gabbardo, F. Wypych and S.C. Amico: composites Part A. Vol. 42 (2011), pp.196-202.

Google Scholar

[8] L. Wang, X. Xie, S. Su, J. Feng and C.A. Wilkie: Polym. Degrad. Stab. Vol. 95 (2010), pp.572-578.

Google Scholar

[9] S. Wang, Y. Zhang, Y. Zhang, C. Zhang and E. Li: J. Appl. Polym. Sci. Vol. 91 (2004), pp.1571-1575.

Google Scholar

[10] K. Agroui, A. Maallemi, M. Boumaour, G. Collins and M. Salama: Sol. Energy Mater. Sol. Cells. Vol. 90 (2006), pp.2509-2514.

DOI: 10.1016/j.solmat.2006.03.023

Google Scholar

[11] V. Cecen, A. Boudenne, L. Ibos, I. Novák, Z. Nógellová, J. Prokes and I. Krupa: Eur. Polym. J. Vol. 44 (2008), pp.3827-3834.

DOI: 10.1016/j.eurpolymj.2008.07.053

Google Scholar

[12] Q. Guo, S. Guo and Z. Wang: J. Controlled Release. Vol. 118 (2007), pp.318-324.

Google Scholar

[13] C. Nyambo, E. Kandare and C.A. Wilkie: Polym. Degrad. Stab. Vol. 94 (2009), pp.513-520.

Google Scholar

[14] L. Ye and B. Qu: Polym. Degrad. Stab. Vol. 93 (2008), pp.918-924.

Google Scholar

[15] L. Wang, B. Li, M. Yang, C. Chen and Y. Liu: J. Colloid Interface Sci. Vol. 356 (2011), pp.519-525.

Google Scholar